

Attachment to item number 5.1 -

Planning Report; Bushfire Hazard Report; Stormwater Assessment; Onsite Wastewater Assessment; and Traffic Impact Assessment

9 VALLEYFIELD ROAD & 123 ROSENDALE ROAD SORELL

Sorell Council

Development Application: Response to Request or Information - 9 Valleyfield Rd & 123 Rosendale Rd, Sorell.pdf Plans Reference: P5 Date Received: 12/04/2024

ireneinc & smithstreetstudio PLANNING & URBAN DESIGN

PLANNING TAS PTY LTD TRADING AS IRENEINC PLANNING & SMITH STREET STUDIO PLANNING & URBAN DESIGN ABN 78 114 905 074

9 VALLEYFIELD ROAD & 123 ROSENDALE ROAD, SORELL

Subdivision -16 lots inclusive of balance

Last Updated -8 Feb 2024 - minor updates 12 April 2024 Author - Poppy Scharkie Reviewed by - Irene Duckett

This report is subject to copyright the owner of which is Planning Tas Pty Ltd, trading as Ireneinc Planning and Smith Street Studio. All unauthorised copying or reproduction of this report or any part of it is forbidden by law and is subject to civil and criminal penalties as set out in the Copyright Act 1968. All requests for permission to reproduce this report or its contents must be directed to Irene Duckett.

TASMANIA 49 Tasma Street, North Hobart, TAS 7000 Tel (03) 6234 9281 Fax (03) 6231 4727 Mob 0418 346 283 Email planning@ireneinc.com.au

ireneinc PLANNING & URBAN DESIGN

1. INTRODUCTION

1.1.1 Site description

The subject lots, 9 Valleyfield Road and 123 Rosendale Road are located along Iron Creek, approximately 2.5km from Sorell's centre. 9 Valleyfield accesses the road network via a 350m long gravel driveway which connects to Valleyfield Road, also a gravel road, that extends off the Arthur Highway. 123 Rosendale also has a long gravel access of approximately 480m that connects to Rosendale Road via a bridge over Iron Creek.

Figure 1: Site outlined in red with aerial image, contours, and road name annotations (The List Map 2023)

The land has a steep embankment adjoining Iron Creek, particularly in the southeastern corner with a sloping low-lying area in the southwestern corner. A portion of the site is documented to have salt marsh and wetland (Succulent saline herbland).

Figure 2: View of the site from Arthur Highway

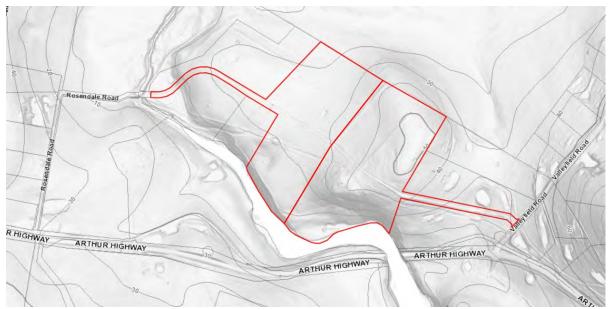


Figure 3: Site outlined in red with hill shade map, contours, and road name annotations (The List Map 2023)

9 Valleyfield Road has an existing dwelling and shed located 25m from the nearest boundary, with a partially formed gravel access through the property which stops at the edge of 123 Rosendale Road. The site and surrounding lots are located on a hill, which has a high point at the 50m contour. Surrounding lots vary between 1ha-10ha.

123 Rosendale Road has an existing dwelling and two sheds located on it, and an area for livestock. The land at 123 is gently sloping, with the house site located on a small ridgeline.

Directly north of the subject land is agricultural land, which is listed as Wattle Hill Vineyard however, the aerial imagery does not indicate the presence of a vineyard, and this may just be the registered business address. The use of the land is not known.

1.2 Proposal

1.2.1 Subdivision:

- The proposal is for the creation of 14 additional lots, 2 balance lots and a road lot.
- The wayleave easements are proposed for removal and the rerouting of electrical infrastructure into the road lot before connecting to the existing private property at 104 Rosendale Road via the northwestern boundary of the proposed lot 1.

TasNetwork have confirmed that the easement will be removed in conjunction with the overhead line's relocation and updated easement (Correspondence dated 19th March 2024, and early engagement meeting dated 9th November 2023).

Please note that the relocation of electricity infrastructure does not constitute development under Land Use and Planning Approvals Act, as per the Electricity Supply Industry Act 1995.

• The existing rights of way which burden and benefit both properties within this application are proposed for removal and to be replaced by public road.

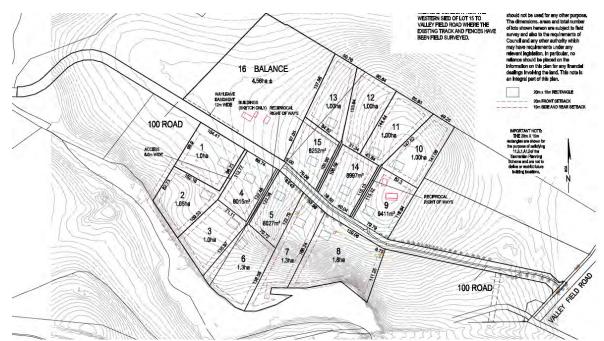


Figure 4: Proposal plan by Leary, Cox and Cripps (not to scale)

Table 1: Lot Sizes	
Lot No.	Size
1	1 Ha
2	1.05 Ha
3	1 ha
4	8015m2
5	8027m2
6	1.3 Ha
7	1.3 Ha
8	1.8 Ha
9 (balance)	9411m2
10	1ha
11	1ha
12	1 ha
13	1ha
14	8997 m2
15	8252m2
16 (balance)	4.56ha
100 (Road)	

Table 1: Lot Sizes

1.2.2 Associated Subdivision Works

The associated works for the creation of the subdivision include:

- Sealing of new road between Valleyfield Road and the northwestern edge of proposed lot 1, with a carriage width of 6.5m. No changes are required to the finish of the new road lot between lot 1 and Rosendale Road.
- Sealing of Valleyfield Road between Arthur Highway and the site entry.
- A new drainage culvert (piped) on the western boundary of Lot 1 and 2 directing stormwater from the new road lot to Iron Creek with appropriate treatment at the outlet to minimise erosion or spread of pollutants, to be detailed at detailed engineer design through condition.
- Upgrade existing drainage pipe located within new road lot approximately 110m west of Valleyfield Road.
- Relocation of powerlines to within the proposed road lot.

Please note that the relocation of electricity infrastructure does not constitute development under Land Use and Planning Approvals Act, as per the Electricity Supply Industry Act 1995.

2. TASMANIAN PLANNING SCHEME- SORELL

The relevant planning scheme for the subject site is the Tasmanian Planning Scheme - Sorell.

2.1 General Provisions

The following general provision 7.10 Development Not Required to be Categorised is relevant to the proposal. Subdivision is listed under Subclause 6.2.6 as development that is not required to be categorised into a use class.

7.10.1 An application for development that is not required to be categorised into one of the Use Classes under sub-clause 6.2.6 of this planning scheme and to which 6.8.2 applies, excluding adjustment of a boundary under sub-clause 7.3.1, may be approved at the discretion of the planning authority.

7.10.2 An application must only be approved under sub-clause 7.10.1 if there is no unreasonable detrimental impact on adjoining uses or the amenity of the surrounding area.

7.10.3 In exercising its discretion under sub-clauses 7.10.1 and 7.10.2 of this planning scheme, the planning authority must have regard to:

- (a) the purpose of the applicable zone;
- (b) the purpose of any applicable code;
- (c) any relevant local area objectives; and

(d) the purpose of any applicable specific area plan.

This planning report addresses the relevant matters as described in General Provision 7.10.

2.2 Rural Living Zone

The site is located within the Rural Living Zone (Pink) and adjoins the Agricultural (brown), Rural (light brown) and Environmental Management (Green) Zones.

Figure 5: Site outlined in red with zone plan (List Map 2023)

The purpose of the Rural Living Zone is:

11.1.1 To provide for residential use or development in a rural setting where:

(a) services are limited; or

(b) existing natural and landscape values are to be retained.

11.1.2 To provide for compatible agricultural use and development that does not adversely impact on residential amenity.

11.1.3 To provide for other use or development that does not cause an unreasonable loss of amenity, through noise, scale, intensity, traffic generation and movement, or other off site impacts.

11.1.4 To provide for Visitor Accommodation that is compatible with residential character

The proposal is for a rural residential subdivision in an area that is not serviced within a rural setting abutting Iron Creek.

The scale of the subdivision regarding the number of lots satisfies the provisions of the scheme as detailed within this report. The lots have been designed to ensure that the natural and landscape values are retained by providing larger lots on the edges of the subdivision within key view lines of the site from public places and locating new building areas away from skylines and ridgelines.

A Traffic Impact Assessment accompanies this application which analyses the potential traffic generation as a result of the subdivision and finds there is no unreasonable impact on the efficiency of the road network with only minor changes observed in the performance. In addition, the new road provides alternative connectivity within the area which will benefit the amenity of the surrounding area, and some upgrades are recommended through condition which will also improve Valleyfield Road.

The new road lot requires stormwater management, and it is proposed to be drained into Iron Creek. Detailed design of the appropriate treatment and design of the outlet to minimise erosion, sedimentation or spread of pollutants can be secured through condition, along with any additional conditions required to minimise impact on the Creek for example a soil and water management plan, which is noted within the civil plans.

No other emissions are anticipated as a result of the subdivision, and the proposal is considered consistent with the zone's purpose.

2.3 Development Standards for Subdivision

11.5.1 Lot design		
Objective: That each lot:		
development in the zone;		
elopment.		
ot, or a lot proposed in a plan of sion, excluding for public open space, a n or littoral reserve or Utilities, must ufficient useable area and dimensions e for its intended use, having regard to: relevant requirements for development ting buildings on the lots; intended location of buildings on the topography of the site; natural or landscape values; equate provision of private open space; pattern of development existing on shed properties in the area, ust be no more than 20% smaller than uplicable lot size required by clause A1.		

RESPONSE

A1 a)

Minimum Lot Size

• a) The minimum lot size in Table 11.1 is 1 hectare. The following table describes the proposed lot sizes (excluding the road lot) and has bolded the lots proposed below the minimum lot size:

Lot No.	Size	Lot No.	Size
1	1 Ha	9 (balance)	9411m2
2	1.05 Ha	10	1ha
3	1 ha	11	1ha
4	8015m2	12	1 ha
5	8027m2	13	1ha
6	1.3 Ha	14	8997 m2
7	1.3 Ha	15	8252m2
8	1.8 Ha	16 (balance)	4.56ha

Lots 1, 2, 3, 6, 7, 8, 10, 11, 12, 13 and 16 meet the minimum lot size requirements.

Lots 4, 5, 9 and 14 - 16 are less than 1 ha and require assessment against the performance criteria.

• a) i) a. The permitted setbacks are as follows:

11.4.2 A2 -20m from the frontage (road). All lots can accommodate a building area that complies with this setback. from the new road lot.

11.4.2 A3 - 10m from the side and rear boundaries. All lots can accommodate a building area that complies with this setback.

As demonstrated in the plan of subdivision, a minimum area of 20x15m has been shown which satisfies 11.4.2 A2 and A3.

• (a) i) b. The subject land has a ROW(s), wayleave easement and restrictive covenant, however the application proposes the removal of the ROWs and wayleave easement.

The wayleave easement will be relocated within this application to the new road load. Notwithstanding this, the 15x20m areas have been located outside of the wayleave easement.

The rights of way that burden and benefit the subject properties are proposed to be replaced by public road, though no building areas are impacted by these ROWs.

Concerning the restrictive covenant, all 15x20m areas shown within the plan of subdivision are sited on slopes of less than twenty per cent as demonstrated in the below table and are above known flood levels. Compliance with all remaining clauses depends on any future design of any building or structure.

Lot No	Degrees (sourced from The List Map	Slope percentage (%)
	'Slope' layer)	
1	2-4	3.5-7
2	6-9	10.5-15.8
3	3-5	5.2-8.7
4	2-4	3.5-7
5	5-8	8.7-14
6	8-11	14 -19.44
7	3-7	5.2-12.3
8	2-4	3.5-7
9	6-7	10.5-12.3
10	1-2	1.75-3.5
11	4-6	7-10.5
12	5-7	8.7-12.3
13	6-7	10.5-12.3
14	5-8	8.7-14
15	5-6	8.7-10.5
16	existing	existing

• a) iii) The below diagram indicates the minimum permitted setbacks of the existing shed and house at 9 Valleyfield Road and 123 Rosendale Road.

Figure 6: existing building on 9 Valleyfield Road with setbacks marked.

Figure 7: Existing building at 123 Rosendale Road with proposed boundaries in turquoise (The List Map)

The existing buildings comply with the permitted setbacks of the zone and satisfy a) iii).

Ρ1

Lots 4, 5,9, 14 and 15 do not comply with the minimum lot size of 1 ha described in Table 11.1 and require assessment under the performance criteria.

Each lot can accommodate a residential building envelope of 20x15m, is greater than 8000m² which is 20 per cent of the minimum requirements of Table 11.1, and has sufficient useable area and dimensions, having regard to:

• a) The existing buildings in Lot 9 comply with the permitted setbacks as discussed in the response to A1 a) iii).

• b) All lots provide a building area that can comply with 11.4.2 A2 and A3, and the existing buildings also meet the permitted frontage and side boundary setbacks whilst providing a BHMP of Bal 12.5.

Lot 2, whilst complying with 11.4.2 A2 and A3 does not comply with A4 (setback from the Agricultural Zone) due to the requirements for bushfire based on a Bal 12.5 assessment. This is not necessary for subdivision, but consideration is given for future development. It is possible that a building area could satisfy the setback from the Agricultural Zone with a higher BAL rating. Notwithstanding this, due to the presence of Iron Creek between Lot 2 and the opposite agricultural zone, this is considered sufficient to buffer any sensitive use and minimise any unreasonable impact on the adjoining agricultural zone.

The building areas have been sited in areas free of spatially specific hazards such as flooding, erosion and landslip and the lots have been designed to ensure compliance with bushfire standards.

The intended location of buildings are considered suitable for the intended rural living use.

- Lot No Degrees (sourced from The List Map Slope percentage (%) 'Slope' layer) 4 2-4 3.5-7 5 8.7-14 5-8 9 6-7 10.5-12.3 5-8 14 8.7-14 15 5-6 8.7-10.5
- c) The building areas for the discretionary lots are on gently sloping areas within the site with slopes less than 20 per cent (maximum of 8 degrees) as detailed below

- d) The lots are not in areas within any known natural values, with the land being former rural/ agricultural land. There are no identified landscape values, and the building areas are not located on a ridgeline.
- e) The four lots are located in gently sloping areas, which provides sufficient useable space for open space with a minimum of 50x50 m areas located behind the building area for potential use for private open space.
- f) The area has undergone a significant transition over the last decade which has resulted in a variety of lot sizes as lots have transitioned from agricultural to rural to rural living. The below table describes the surrounding lots, which indicate that they range from 0.86 to 62ha in size.

Address	AREA (HA)
Flimby Host Farm' - 68 Rosendale Rd Sorell Tas 7172	0.86
7 Rosendale Rd Sorell Tas 7172	0.99
'Willesley' - 16 Nugent Rd Sorell Tas 7172	0.99
29 Valleyfield Rd Sorell Tas 7172	0.99
55 Valleyfield Rd Sorell Tas 7172	1
43 Valleyfield Rd Sorell Tas 7172	1
41 Valleyfield Rd Sorell Tas 7172	1
22 Valleyfield Rd Sorell Tas 7172	1

20 Valleyfield Rd Sorell Tas 7172	1
57 Valleyfield Rd Sorell Tas 7172	1.2
10 Valleyfield Rd Sorell Tas 7172	1.3
'Valley View' - 48 Nugent Rd Sorell Tas 7172	1.4
30 Nugent Rd Sorell Tas 7172	1.8
'Lavender Fields' - 36 Nugent Rd Sorell Tas 7172	1.8
40 Nugent Rd Sorell Tas 7172	1.9
104 Rosendale Rd Sorell Tas 7172	1.9
187 Arthur Hwy Sorell Tas 7172	2
92 Rosendale Rd Sorell Tas 7172	3.1
27 Valleyfield Rd Sorell Tas 7172	3.5
11 Valleyfield Rd Sorell Tas 7172	3.5
7 Valleyfield Rd Sorell Tas 7172	3.5
93 Rosendale Rd Sorell Tas 7172	5
69 Rosendale Rd Sorell Tas 7172	5.4
10 Rosendale Rd Sorell Tas 7172	9.8
'Thornhill' - 185 Arthur Hwy Sorell Tas 7172	11
52 Valleyfield Rd Sorell Tas 7172	15
'Wattle Hill Vineyard' - 208 Nugent Rd Sorell Tas 7172	62.4

The lot shapes also vary considerably with no clear relationship with topography as demonstrated in the below plan:

Figure 8: Study area indicated in blue with hillshade and contours (The List Map 2024)

Each lot within the plan of subdivision is considered to have a sufficient useable area and dimensions suitable for its intended rural living use and therefore satisfies the performance criteria.

- 10
AZ

P2

Each later a later proposed in a plan of	Each lot or a lot proposed in a plan of
Each lot, or a lot proposed in a plan of	Each lot, or a lot proposed in a plan of
subdivision, excluding for public open space, a	subdivision, must be provided with a frontage or
riparian or littoral reserve or Utilities, must have	legal connection to a road by a right of
a frontage not less than 40m.	carriageway, that is sufficient for the intended
	use, having regard to:
	(a) the width of frontage proposed, if any;
	(b) the number of other lots which have the land subject to the right of carriageway as their sole
	or principal means of access;
	(c) the topography of the site;
	(d) the functionality and useability of the frontage;

RESPONSE

A2

- Lots 1, 4, 5, 7, 8, 9, 15, 15 and 16 all have frontages in excess of 40m.
- Lots 2, 3, 6, 10, 11, 12 and 13 are internal lots with frontages of 3.6m for all except lot 2 which has a frontage of 6m.

The performance criteria must be addressed for Lots 2, 3, 6, 10, 11, 12 and 13

Ρ2

Each lot has a frontage that is suitable for the rural living use, having regard to:

- a) The frontage width for these lots is 3.6m for all except lot 2 which has a frontage width of 6m.
- b) Each lot, excluding lot 2, has frontage with two accesses side by side with reciprocal rights of way benefiting and burdening both lots. This provides the ability for shared driveway facilities in response to the bushfire requirements.
- c) The land has a steep embankment adjoining Iron Creek, particularly in the southeastern corner with a sloping low-lying area in the southwestern corner and is steeply sloped in the northern eastern portion.
- d) The frontage is sufficient for the intended purpose of providing access to the road and satisfies the relevant bushfire requirements.

As demonstrated, each lot has a frontage that is suitable for the rural living use and therefore satisfies P2.

A3	Р3
subdivision, must be provided with a vehicular access from the boundary of the lot to a road in accordance with the requirements of the road authority	Each lot, or a lot proposed in a plan of subdivision, must be provided with reasonable vehicular access to a boundary of a lot or building area on the lot, if any, having regard to: (a) the topography of the site; (b) the length of the access; (c) the distance between the lot or building area and the carriageway;

	(d) the nature of the road and the traffic;
	(e) the anticipated nature of vehicles likely to
	access the site; and
	(f) the ability for emergency services to access
	the site
25020105	

RESPONSE

The access from a boundary of a lot to a road can be designed in accordance with the requirements of the road authority as detailed engineering design through condition.

A3 can be satisfied.

2.4 Rural Zone

A portion of Valleyfield Road within the Rural Zone is proposed to be sealed. This is classified as an existing Minor Utilities use (a no permit required use). There are no relevant use or development standards that relate to the works proposed within the zone.

3. CODES

3.1 Natural Assets Code

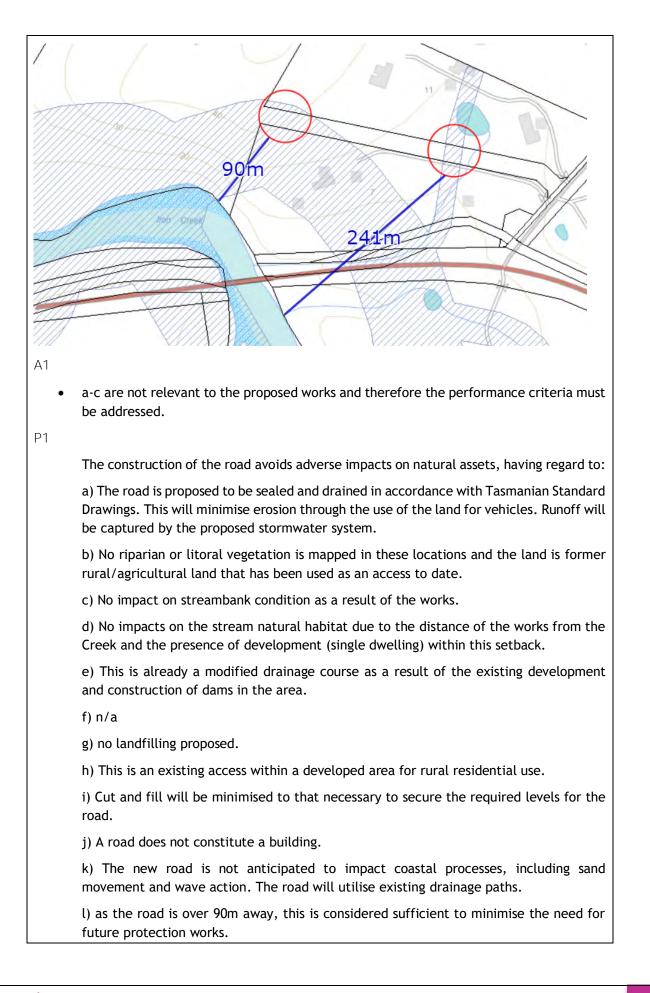
The subject site has areas mapped for the protection and management of natural assets as shown in the below map.

- The blue hatch is the waterway and coastal protection area.
- The green polygons for the priority vegetation area.
- The brown hatch is the Future Coastal Refugia.

Figure 9: Cadastre plan with site shown in red and natural assets mapping (The List Map 2023)

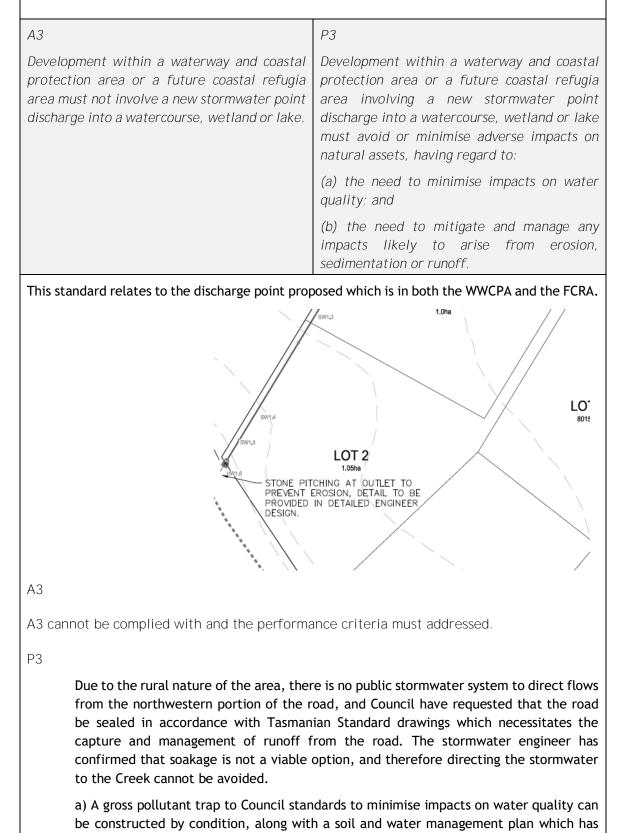
New lots include land mapped within the waterway and coastal protection area, future coastal refugia, and the Priority Vegetation Area.

The portion of Valleyfield Road proposed to be sealed is also mapped in the Priority Vegetation Area, however, as no clearance is proposed there are no relevant standards to assess relating to the Priority Vegetation Area.


3.1.1 Development Standards

These standards relate to works required for stormwater and the construction of road within the Waterway and Coastal Protection Area and the Priority Vegetation Area.

C7.6.1 Buildings and works within a waterway and coastal protection area or a future coastal refugia area		
Objective: That buildings and works within a waterway and coastal protection area or future coastal refugia area will not have an unnecessary or unacceptable impact on natural assets.		
A1	P1.1	
Buildings and works within a waterway and coastal protection area must:	Buildings and works within a waterway and coastal protection area must avoid or	


,	minimise adverse impacts on natural assets,
(a) be within a building area on a sealed plan approved under this planning scheme;	having regard to:
(b) in relation to a Class 4 watercourse, be for a crossing or bridge not more than 5m in	(a) impacts caused by erosion, siltation, sedimentation and runoff;
width; or	(b) impacts on riparian or littoral vegetation;
(c) if within the spatial extent of tidal waters, be an extension to an existing boat ramp, car	(c) maintaining natural streambank and streambed condition, where it exists;
park, jetty, marina, marine farming shore facility or slipway that is not more than 20% of the area of the facility existing at the effective date.	(d) impacts on in-stream natural habitat, such as fallen logs, bank overhangs, rocks and trailing vegetation;
	(e) the need to avoid significantly impeding natural flow and drainage;
	(f) the need to maintain fish passage, where known to exist;
	(g) the need to avoid land filling of wetlands;
	(h) the need to group new facilities with existing facilities, where reasonably practical;
	(i) minimising cut and fill;
	(j) building design that responds to the particular size, shape, contours or slope of the land;
	(k) minimising impacts on coastal processes, including sand movement and wave action;
	(I) minimising the need for future works for the protection of natural assets, infrastructure and property;
	(m) the environmental best practice guidelines in the Wetlands and Waterways Works Manual; and
	(n) the guidelines in the Tasmanian Coastal Works Manual.
RESPONSE	

This standard relates to the construction of the road in these locations:

m) and n) The construction management plan can be developed in accordance with the manual and guidelines through condition, as Council require.

The proposal satisfies P1.

regard to the environmental best practice guidelines in the Wetlands and Waterways Works Manual; and the guidelines in the Tasmanian Coastal Works Manual.

b) A piped system with stone pitching is proposed to prevent erosion and dissipate flows.

The proposed stormwater discharge point into the Iron Creek demonstrates how it will minimise adverse impacts on natural assets and the satisfies P3.

3.1.2 Subdivision -Waterway and Coastal Protection Area or a Future Coastal Refugia Area

C7.7.1 Subdivision within a waterway and coastal protection area or a future coastal refugia area

Objective: That

(a) works associated with subdivision within a waterway and coastal protection area or a future coastal refugia area will not have an unnecessary or unacceptable impact on natural assets; and

(b) future development likely to be facilitated by subdivision is unlikely to lead to an unnecessary or unacceptable impact on natural assets

A1 Ρ1 Each lot, or a lot proposed in a plan of Each lot, or a lot proposed in a plan of subdivision, within a waterway and coastal subdivision, within a waterway and coastal protection area or a future coastal refugia protection area or a future coastal refugia area, must minimise adverse impacts on area, must: natural assets, having regard to: (a) be for the creation of separate lots for existing buildings; (a) the need to locate building areas and any associated bushfire hazard management area (b) be required for public use by the Crown, a to be outside a waterway and coastal council, or a State authority; protection area or a future coastal refugia (c) be required for the provision of Utilities; area: and (d) be for the consolidation of a lot; or (b) future development likely to be facilitated by the subdivision. (e) not include any works (excluding boundary fencing), building area, services, bushfire hazard management area or vehicular access within a waterway and coastal protection area or future coastal refugia area.

RESPONSE

A1

a) through to d) are not relevant to the proposal. Regarding A1 e) the building areas, services etc associated with lots 1, 4 and 5 and 9-15 are outside of the waterway and coastal protection area and Future Coastal Refugia Area and comply with A1. However, the following works are proposed which are located in the Waterway and Coastal Protection Area:

• Works for stormwater management of the road are required within the overlays for the drainage into the creek; and

- the HMA of lots 2, 3, 6, 7 and 8 partially overlaps with the waterway and coastal protection code; and
- the indicative wastewater treatment area for lot 6 is within the overlay.

As the works are within the waterway and coastal protection area, the performance criteria must be addressed.

P1

a) This Lot 5 and 7's HMAs and the indicative lot 6 wastewater area are over 50m (between 50-100m) from the creek edge, noting Table C7.3 states that the waterway and coastal protection area extends 40m from the high tide mark, and are located within former agricultural land. The HMAs and the wastewater area will not impact the vegetation community of the Succulent saline herbland. It's not anticipated that the HMA and indicative wastewater area will have an adverse impact on the natural asset. Lot 2 and 3 have been allocated generous bushfire building areas, with option for the waterway area to be avoided in any future development application for a building. Notwithstanding this, the HMAs for these two lots are already within modified pasture and management of this area will have no new impacts on the waterway.

The discharge point for stormwater cannot be avoided, and appropriate design and appropriate treatment at the outlet to minimise erosion or spread of pollutants can be finalised at detailed engineer design through condition.

b) The subdivision potential of the lots affected by the overlays is low as they are either the permitted lot size or a minimum size required to respond to the values and hazards mapped within them including bushfire requirements. Future development potential is low.

Each lot, or a lot proposed in a plan of subdivision minimises adverse impacts on natural assets and the P1 is satisfied.

3.1.3 Subdivision - Priority Vegetation Area

C7.7.2 Subdivision within a priority vegetation area		
Objective: That:		
(a) works associated with subdivision will not have an unnecessary or unacceptable impact		
on priority vegetation; and		
(b) future development likely to be facilitated by subdivision is unlikely to lead to an		
unnecessary or unacceptable impact on priority vegetation.		
A1	P1.1	
Each lot, or a lot proposed in a plan of subdivision, within a priority vegetation area must:	Each lot, or a lot proposed in a plan of subdivision, within a priority vegetation area must be for:	
(a) be for the purposes of creating separate lots for existing buildings;		

(b) be required for public use by the Crown, a council, or a State authority;
(c) be required for the provision of Utilities;
(d) be for the consolidation of a lot; or
(e) not include any works (excluding boundary fencing), building area, bushfire hazard management area, services or vehicular access within a priority vegetation area.

RESPONSE

A1

Lots 6, 7, 8 and the road lot are within the priority vegetation area. Lots 6, 7 and 8 have the building area, including the indicative wastewater area, accesses and bushfire hazard management outside of the priority vegetation overlay, and therefore satisfies A1 e).

The road lot is required to facilitate the subdivision and is for Utilities (road connecting into the existing transport network) and complies with A1 c).

A1 is satisfied.

3.3 Coastal Inundation Hazard Code

The site is subject to low (yellow), medium (orange) and high (red) coastal inundation as shown in the below map:

Figure 10: Coastal Inundation hazard bands

3.3.1 Exemptions

Works for stormwater management associated with the road are proposed within the overlay, and this is development for Minor Utilities and is therefore exempted by C11.4.1 d) (v).

3.3.2 Subdivision Standards

C11.7.1 Subdivision within a coastal inundation hazard area			
Objective: That subdivision within a coastal inundation hazard area does not create an opportunity for use or development that cannot achieve and maintain a tolerable risk from coastal inundation.			
A1	P1		
Each lot, or a lot proposed in a plan of subdivision, within a coastal inundation hazard area, must: (a) be able to contain a building area, vehicle access, and services, that are wholly located outside a coastal inundation hazard area;	Each lot, or a lot proposed in a plan of subdivision within a coastal inundation hazard area must not create an opportunity for use or development that cannot achieve and maintain a tolerable risk from coastal inundation, having regard to:		
(b) be for the creation of separate lots for existing buildings;			
(c) be required for public use by the Crown, a council or a State authority; or			
(d) be required for the provision of Utilities			
RESPONSE			
The proposal complies with A1 a) and no building areas, vehicle accesses or services are proposed within the coastal inundation area.			

A1 is satisfied.

3.4 Landslip Hazard Code

The land is subject to low (yellow) and medium (orange) landslip hazards. Lots 5, 6 and 10 are in the low landslip hazard area and lots 7 and 8 are in the medium landslip hazard area.

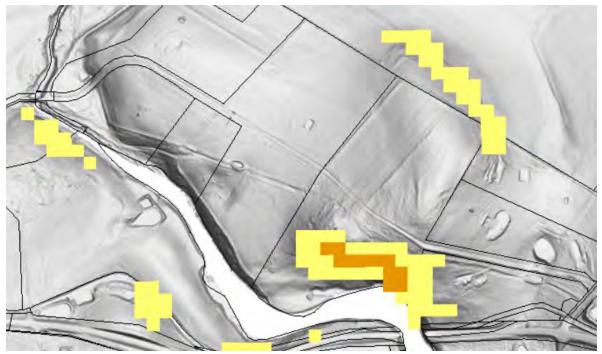


Figure 11: Landslide hazard (Yellow = low and orange = medium)

3.4.1 Exemptions

- Exemption C15.4.1 (e) development, including subdivision, on land within a low landslip hazard band, if it does not involve significant works is relevant to lots 5, 6, and 10.
- Exemption C15.4.1 (i) subdivision of land within a medium landslip hazard band if: (i) it does not involve significant works; or (ii) it does not create a new road, or extend an existing road.
- No new road or extension to an existing road is proposed within the landslip hazard overlay.

The above exemptions are relevant to the subdivision of lots 7 & 8 which will be further discussed below.

Significant Works

Significant works means:

(a) excavation equal to or greater than 1m in depth, including temporary excavations for the installation or maintenance of services or pipes;

(b) excavation or land filling of greater than 100m3 whether or not material is sourced on the site or imported;

Lots 7 and 8 do not require excavation within the landslip hazard area as part of this application, nor would any future use or development based on a building area of 15x20m, vehicle access, wastewater and stormwater water disposal areas necessitate excavation as a result of the subdivision design.

(c) felling or removal of vegetation over a contiguous area greater than 1000m2;

Regarding vegetation management for bushfire, the existing vegetation is former agricultural land and no felling or removal is required to manage the existing vegetation. The vegetation will be retained but modified to a low-fuel state consistent with the Bushfire Hazard Management Plan.

(d) the collection, pooling or storage of water in a dam, pond, tank or swimming pool with a volume of more than 45 000L;

No collection, pooling or storage of water in a dam, pond, tank or swimming pool is proposed within the landslip hazard area as part of the subdivision, nor does any future use and development rely on this.

(e) removal, redirection, or introduction of drainage for surface or groundwater; and

The accompanying stormwater report states:

There will be no concentrated surface water flows discharging onto the Landslide Hazard areas as a result of the development. This is the case for stormwater from new public drainage infrastructure, and also from the private lots...

The new road will intercept some of the existing surface water flows that flow toward the Landslide Hazard area, which will now drain via the roadside swale drain and then stormwater pipe to Iron Creek. This will reduce the amount of stormwater flowing in the Landslide Hazard area and reduce the risk of Landslide there.

(f) discharge of stormwater, sewage, water storage overflow or other wastewater.

The engineering drawings have shown that wastewater areas including reserve areas, and onsite stormwater disposal areas for future use and development of a four-bedroom dwelling, and a total impervious area of 400m² can be accommodated outside the mapped landslip hazard areas with Lots 7 and 8.

As demonstrated within the civil plans, the development does not constitute *significant works* within the landslip hazard overlay areas within any of the lots affected by the code.

It is noted the exemptions to not preclude future buildings within the landslip hazard area, only works that form significant works or create a new road/ extend a road. Under exemption C15.4.1 d) a future single dwelling could propose a dwelling within the low and medium landslip hazard band without requiring planning approval, as it requires authorisation under the Building Act 2016.

The proposal is exempted from the Landslip Hazard Code. Notwithstanding this, if Council take an alternate view, C15.7.1 Subdivision within a landslip hazard area A1 a) states Each lot, or a lot proposed in a plan of subdivision, within a landslip hazard area be able to contain a building area, vehicle access, and services, that are wholly located outside a landslip hazard area. The engineering drawings clearly indicate a building area of a minimum of 15x20m, services and vehicle access can be wholly located outside a landslip hazard area. If the application required assessment under C15.7.1, it would comply with A1 a).

3.5 Bushfire Prone Areas Code

A report has been prepared by GES Solutions which demonstrates that each lot including the road can comply with the relevant bushfire standards.

3.6 Safeguarding of Airports Code -152m

The site is wholly within the obstacle limitation area with an AHD limit of 152m and most of this site is in the noise exposure area.

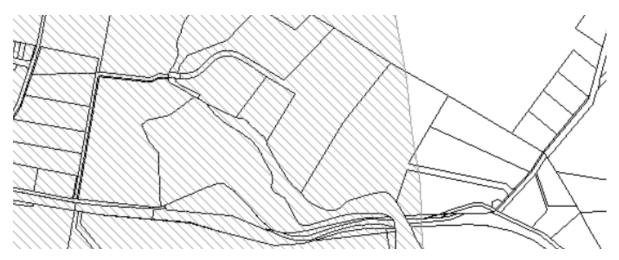


Figure 12:Noise Exposure area in hatch with cadastre plan (The List Map 2023)

The following exemption is applicable for the obstacle limitation area:

development that is not more than the AHD height specified for the site of the development in the relevant airport obstacle limitation area.

No development exceeding the allowable AHD is proposed.

3.6.1 C16.7 Development Standards for Subdivision

C16.7.1 Subdivision

Objective: To provide for subdivision:

(a) that allows for sensitive use to be suitably located to avoid exposure to excessive

aircraft noise; and

(b) so that future development for sensitive use does not compromise the operation of airports.

A1	P1
Each lot, or a lot proposed in a plan of subdivision, within an airport noise exposure area must be:	Each lot, or a lot proposed in a plan of subdivision, within an airport noise exposure area must not create an opportunity for a
(a) be for the creation of separate lots for existing buildings;	sensitive use to be exposed to excessive aircraft noise, having regard to:
(b) be required for public use by the Crown, a council or a State authority;	(a) the location, orientation and elevation of the site relative to aircraft flight paths;
(c) be required for the provision of Utilities;	(b) the current and future type and frequency of aircraft operating from the airport;
(d) be for the consolidation of lots; (e) be for the creation of a lot that contains a	(c) the type of use and the operational requirements for the use;
building area not less than 10m x 15m entirely located outside of the airport noise exposure area; or	(d) the layout and construction of buildings associated with the use;
(f) not be intended for a sensitive use.	(e) the need to not compromise the future operation of the airport;
	(f) the requirements of any relevant airport master plan; and
	(g) any advice from the airport operator or Airservices Australia.

A1

a) to d) are not relevant to the proposal.

e) The entire site is covered by this overlay and e) cannot be satisfied.

f) The proposal is intended for a residential subdivision and cannot satisfy f).

The proposal does not satisfy A1 and the performance criteria must be addressed.

P1

An ANEF Assessment has been prepared by NVC and the following response has been extracted from page 4 of the assessment:

(a) The location of site is approximately 8.4 km from the ANEF 20 contour, and perpendicular to the flight path of the airport. This places the proposed site well outside of the flight path, and thus orientation and elevation will have minimal effect on the noise levels within the building.

(b) The type of aircraft operating form the airport in the future are not expected to change markedly, and thus instantaneous noise levels are not expected to change. Long term noise levels may increase in the area in the future due to frequency of aircraft pass-by, but given the current and expected volumes of air traffic, the change is expected to be negligible. This is quantified in the ANEF contours for 2042 (see Figure 3.1).

(c) The type of use is proposed residential subdivision but is a significant distance from ANEF 20 contour, approximately 8.4 km.

(d) The layout of the buildings has a negligible effect regarding noise. The proposed construction is to utilise double glazing, and as the glazing is the weakest point, will reduce aircraft noise levels internally.

(e) The proposal is not deemed to compromise the future operation of the airport regarding noise.

(f) As noted from Figure 3.1, the proposed site is entirely outside the ANEF 20 contours, and thus the site does not require any specific building construction to protect from airport noise intrusion. The proposal is thus deemed to be in accordance with AS 2021:2015.

(g) No requirements relevant to noise, due to the proposed residence being outside the ANEF 20 contour.

In summary, the proposal is deemed to comply with all requirements relevant to noise, specifically AS 2021:2015, and thus, residential amenity is unlikely to be compromised due to the operation of the airport. The proposal is therefore deemed to comply with clause C16.7.1-P1 of the Tasmanian Planning Scheme.

The proposal is considered to satisfy the performance criteria.

4. CONCLUSION

The proposal is for the creation of 14 additional rural residential lots and two balance lots, and the creation of a road lot connecting Valleyfield Road to Rosendale Road including works in the existing Valleyfield Road Reservation. Works for stormwater servicing are proposed including a new culvert draining into Iron Creek.

The proposal triggers discretion with respect to the following clauses and has demonstrated compliance with the performance criteria:

- General Provision 7.10 Development Not Required to be Categorised
- Rural Living Zone 11.5.1 Lot design P1 and P2
- C7.6.1 Buildings and works within a waterway and coastal protection area or a future coastal refugia area P1 and P3.
- C7.7.1 Subdivision within a waterway and coastal protection area or a future coastal refugia area P1
- Safeguarding of Airports Code C16.7.1 Subdivision P1

This report has demonstrated the proposal can either satisfy the remaining permitted clauses in the scheme or is exempt. The application demonstrates that the lots are suitable for the intended use which is further supported by the plans which show a building area for each lot, the indicative wastewater area and the hazard management areas.

Proposed Subdivision 9 Valleyfield Road, Sorell Bushfire Hazard Report

Applicant: Annecy Pty Ltd February 2024, J9772v1

Contents	~
1.0 Introduction	.3
2.0 Proposal	.3
3.0 Site Description	.3
4.0 Bushfire Hazard Assessment	.5
4.1 Vegetation	.5
4.2 slopes	.5
4.3 Bushfire Attack Level	.6
5.0 Bushfire Prone Areas Code	.6
5.1 Hazard Management Areas	.6
5.1.1 Building areas	.7
5.1.2 Hazard Management Area requirements	.7
5.2 Public and firefighting Access	.8
5.2.1 Public Roads	.8
5.2.2 Property access	.8
5.2.2.1 Lots 1 to 8 and Lots 10 to 15 (for building compliance)	.8
5.2.2.2 Lots 9 and 16	.9
5.3 Water supplies for firefighting	.9
6.0 Compliance1	10
6.1 Planning Compliance1	10
6.2 Building Compliance (for future development)1	11
7.0 Summary1	11
8.0 Limitations Statement1	12
9.0 References1	13

Appendix A - Plan of Subdivision

Appendix B - BAL assessment tables

Appendix C - Bushfire Hazard Management Plan

Appendix D - Planning Certificate

1.0 Introduction

This Bushfire Hazard Report has been completed to form part of supporting documentation for a planning permit application for a sixteen lot subdivision. The proposed subdivision occurs in a Bushfire-prone Area defined by the Tasmanian Planning Scheme – Sorell(the Scheme). This report has been prepared by Mark Van den Berg a qualified person under Part 4a of the *Fire Service Act 1979* of Geo Environmental Solutions Pty Ltd for Annecy Pty Ltd

The report considers all the relevant standards of Code C13 of the planning scheme, specifically;

- The requirements for appropriate Hazard Management Areas (HMA's) in relation to building areas;
- The requirements for Public and Private access;
- The provision of water supplies for firefighting purposes;
- Compliance with the planning scheme, and
- The provision of a Bushfire Hazard Management Plan to facilitate appropriate compliant future development.

2.0 Proposal

The proposal is for the subdivision of land resulting in sixteen lots as described by the proposed plan of subdivision in appendix A. Public access to new lots will be provided by a new public roadway. The development is proposed to occur in a single stage. Lots 16 and 9 contain existing residential development, all other lots are undeveloped.

3.0 Site Description

The subject site comprises private land on two titles at 9 Valleyfield Road and 123 Rosedale Road, Sorell, title references 130391/2 and 179945/2 respectively (figure 1). The site occurs in the municipality of the Sorell, this application is administered through the Tasmanian Planning Scheme – Sorell which makes provision for subdivision. The proposed development occurs within the Rural Living zone. The site is located to the east of the Sorell settled area, approximately 1.65 km north north-east of Mount Garrett (figure 1). The surrounding landscape is characterised by grasslands with scattered native vegetation remnants, landscape scale native vegetation units other than grassland are greater than 4 km from the proposal. Land use adjacent to the proposal comprises residential development on lots of various sizes and agriculture, the subdivision area is bounded to the south and south-west by Iron Creek. (figure 2).

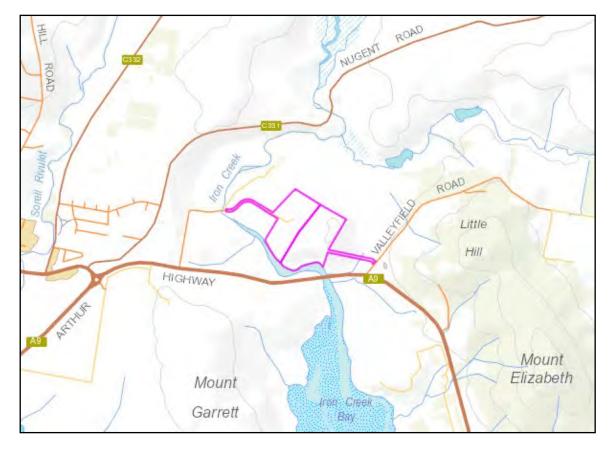


Figure 1. The site in a topographical context, pink line defines the parent lot (approximate).

Figure 2. Aerial photo of the site, pink line denotes the parent lot (approximate).

4.0 Bushfire Hazard Assessment

4.1 Vegetation

The site and adjacent lands within 100 metres of the proposed building areas carry Grassland vegetation (figures 3 to 5). The highest risk vegetation occurs to the south of proposed lots 7 and 8.

4.2 slopes

The effective slopes in relation to the proposed building areas are variable and range from upslope to 26 degrees downslope, slope may influence the bushfire attack at the site particularly for lots 7 and 8.

Figure 3. Grassland vegetation within and adjacent to lot 8 and lot 7 looking west from lot 8.

Figure 4. Grassland vegetation within lots 14 & 15, and Lots 1, 4, & 5.

Figure 5. Grassland vegetation within lots 4, 5 & 7, lots 15, 14 & 9.

4.3 Bushfire Attack Level

An assessment of vegetation and topography was undertaken within and adjacent to the proposed building areas for each lot. A bushfire attack level assessment in accordance with *AS3959-2018* (method 1, simplified procedure) was completed which has determined the bushfire attack level for each building area. The building areas and bushfire attack levels are identified on the BHMP.

5.0 Bushfire Prone Areas Code

Code C13 of the planning scheme articulates requirements for the provision of hazard management areas, standards for access and firefighting water supplies and requirements for hazard management for staged subdivisions.

5.1 Hazard Management Areas

Hazard management areas are required to be established and/or maintained for all lots, they provide an area around the building within which fuels are managed to reduce the impacts of direct flame contact, radiant heat and ember attack on the building. Lots 9 and 16 have existing residential development and will require the establishment of hazard management areas prior to sealing of titles.

The Bushfire Hazard Management Plan (BHMP) shows building areas (for habitable buildings) and associated Hazard Management Areas for each lot, guidance for establishment and maintenance of HMA's is provided below. Where existing residential development occurs, the building area includes the foot print of the existing residential buildings.

5.1.1 Building areas

Building areas for habitable buildings are shown on the BHMP. Each building area has been assessed and a Bushfire Attack Level (BAL) assigned to it. If future buildings are located within the building area and hazard management areas comply with the minimum setbacks for the building area, the buildings may be constructed to the bushfire attack level assigned to that lot. If associated structures like sheds or other non-habitable buildings exist or are proposed, they do not need to conform to a BAL unless they are within 6 metres of the habitable building.

5.1.2 Hazard Management Area requirements

A hazard management area is the area, between a habitable building or building area and the bushfire prone vegetation which provides access to a fire front for firefighting, is maintained in a minimal fuel condition and in which there are no other hazards present which will significantly contribute to the spread of a bushfire. This can be achieved through, but is not limited to the following strategies;

- Remove fallen limbs, sticks, leaf and bark litter;
- Maintain grass at less than a 100mm height;
- Avoid or minimise the use of flammable mulches (especially against buildings);
- Thin out under-story vegetation to provide horizontal separation between fuels;
- Prune low-hanging tree branches (<2m from the ground) to provide vertical separation between fuel layers;
- Remove or prune larger trees to establish and maintain horizontal separation between tree canopies;
- Minimise the storage of flammable materials such as firewood;
- Maintain vegetation clearance around vehicular access and water supply points;
- Use low-flammability plant species for landscaping purposes where possible;
- Clear out any accumulated leaf and other debris from roof gutters and other debris accumulation points.

It is not necessary to remove all vegetation from the hazard management area, trees and shrubs may provide protection from wind borne embers and radiant heat under some circumstances if other fuels are appropriately managed.

5.2 Public and firefighting Access

5.2.1 Public Roads

A new public roadway will be constructed between Rosendale Road and Valleyfield Road to service the proposed lots. The new roadway will be design and constructed to achieve the following minimum specifications.

(a) two-wheel drive, all-weather construction;

(b) load capacity of at least 20t, including for bridges and culverts;

(c) minimum carriageway width is 7m for a through road, or 5.5m for a dead-end or culde-sac road;

(d) minimum vertical clearance of 4m;

(e) minimum horizontal clearance of 2m from the edge of the carriageway;

(f) cross falls of less than 3 degrees (1:20 or 5%);

(g) maximum gradient of 15 degrees (1:3.5 or 28%) for sealed roads, and 10 degrees

(1:5.5 or 18%) for unsealed roads;

(h) curves have a minimum inner radius of 10m;

(i) dead-end or cul-de-sac roads are not more than 200m in length unless the carriageway is 7 metres in width;

(j) dead-end or cul-de-sac roads have a turning circle with a minimum 12m outer radius; and

(k) carriageways less than 7m wide have 'No Parking' zones on one side, indicated by a road sign that complies with Australian Standard AS1743-2001 Road signs-Specifications.

5.2.2 Property access

5.2.2.1 Lots 1 to 8 and Lots 10 to 15 (for building compliance)

If property access is greater than 30 metres in length, the following specifications will apply and are required to achieve building compliance.

- a) All-weather construction;
- b) Load capacity of at least 20 tonnes, including for bridges and culverts;
- c) Minimum carriageway width of 4 metres;
- d) Minimum vertical clearance of 4 metres;
- e) Minimum horizontal clearance of 0.5 metres from the edge of the carriageway;
- f) Cross falls of less than 3° (1:20 or 5%);
- g) Dips less than 7° (1:8 or 12.5%) entry and exit angle;
- h) Curves with a minimum inner radius of 10 metres;
- i) Maximum gradient of 15° (1:3.5 or 28%) for sealed roads, and 10° (1:5.5 or 18%) for unsealed roads; and
- j) Terminate with a turning area for fire appliances provided by one of the following:
 - (i) A turning circle with a minimum inner radius of 10 metres;
 - (ii) A property access encircling the building; or
 - (iii) A hammerhead "T" or "Y" turning head 4 metres wide and 8 metres long.

If property access is less than 30 metres in length to the firefighting water connection point, there are no minimum specifications required to achieve building compliance.

5.2.2.2 Lots 9 and 16

There is existing property access to the existing residential buildings on both lots. In this circumstance both existing accesses will provide safe access and egress to occupants and emergency services personnel. The existing accesses are consistent with specifications detailed at s5.2.2.1, however, as new crossovers will be developed as part of public roadway works any new property access work will be required to comply with s5.2.2.1 above.

5.3 Water supplies for firefighting

The subdivision and resultant lots are not serviced by a reticulated water supply system, therefore, a dedicated, static, firefighting water supply will be provided for each building area in accordance with table 1 below. Lots 1 to 8 and Lots 10 to 15 will require a compliant firefighting water supply to achieve building compliance. The firefighting water supply for existing residential development on lots 9 and 16 will be required prior to the sealing of titles. Table 1. Requirements for Static Water Supplies dedicated for Firefighting.

	Element	Requirement
Α.	Distance between building area to be protected and water supply	The following requirements apply: (a) The building area to be protected must be located within 90 metres of the firefighting water point of a static water supply; and (b) The distance must be measured as a hose lay, between the firefighting water point and the furthest part of the building area
B.	Static Water Supplies	A static water supply: (a) May have a remotely located offtake connected to the static water supply; (b) May be a supply for combined use (firefighting and other uses) but the specified minimum quantity of firefighting water must be available at all times; (c) Must be a minimum of 10,000 litres per building area to be protected. This volume of water must not be used for any other purpose including firefighting sprinkler or spray systems; (d) Must be metal, concrete or lagged by non-combustible materials if above ground; and (e) If a tank can be located so it is shielded in all directions in compliance with Section 3.5 of AS 3959:2018, the tank may be constructed of any material provided that the lowest 400 mm of the tank exterior is protected by: (i) metal; (ii) non-combustible material; or
С.	Fittings, pipework and accessories (including stands and tank supports)	 (iii) fibre-cement a minimum of 6 mm thickness. Fittings and pipework associated with a firefighting water point for a static water supply must: (a) Have a minimum nominal internal diameter of 50mm; (b) Be fitted with a valve with a minimum nominal internal diameter of 50mm; (c) Be metal or lagged by non-combustible materials if above ground; (d) Where buried, have a minimum depth of 300mm; (e) Provide a DIN or NEN standard forged Storz 65 mm coupling fitted with a suction washer for connection to firefighting equipment; (f) Ensure the coupling is accessible and available for connection at all times; (g) Ensure the coupling is fitted with a blank cap and securing chain (minimum 220 mm length); (h) Ensure underground tanks have either an opening at the top of not less than 250 mm diameter or a coupling compliant with this Table; and (i) Where a remote offtake is installed, ensure the offtake is in a position that is: (ii) Accessible to allow connection by firefighting equipment;

		(iii) At a working height of 450 – 600mm above ground level; and
		(iv) Protected from possible damage, including damage by vehicles.
D.	Signage for static	The firefighting water point for a static water supply must be identified by a sign
	water	permanently fixed to the exterior of the assembly in a visible location. The sign
	connections	must:
		(a) comply with water tank signage requirements within AS 2304:2019; or
		(b) comply with the Tasmania Fire Service Water Supply Signage Guideline
		published by the Tasmania Fire Service.
E.	Hardstand A	(a) No more than three metres from the firefighting water point, measured as a
	hardstand area for	hose lay (including
	fire appliances must	the minimum water level in dams, swimming pools and the like);
	be provided:	(b) No closer than six metres from the building area to be protected;
		(c) With a minimum width of three metres constructed to the same standard as
		the carriageway; and
		(d) Connected to the property access by a carriageway equivalent to the
		standard of the property access.

6.0 Compliance

6.1 Planning Compliance

Table 2 summarises the compliance requirements for subdivisions in bushfire prone areas against Code C13 as they apply to this proposal. A planning certificate has been issued for the associated BHMP as being compliant with the relevant standards as outlined below and is located in appendix D.

Table 2.	Compliance	with Code C13	3 of the	Tasmanian	Planning Scheme	– Sorell

Clause	Compliance
C13.4 Use or development exempt from this code	Not applicable.
C13.5 1 Vulnerable Uses	Not applicable.
E13.5.2 Hazardous Uses	Not applicable
C13.6.1 Subdivision: Provision of hazard management areas	The Bushfire Hazard Management Plan is certified by an accredited person. Each lot within the subdivision has a building area and associated hazard management area shown which is suitable for BAL-12.5 and BAL-19 construction standards. Hazard management areas are able to be contained within each individual lot, therefore there is no requirement for part 5 agreements or easements to facilitate hazard management off site. The proposal is compliant with the acceptable solution at A1(b).
C13.6.2 Subdivision: Public and firefighting access	One new public roadway is proposed, minimum specifications for its construction are provided consistent with the requirements of table C13.1. Minimum standards for property access have been specified for all Lots consistent with table C13.2. The proposal is compliant with the acceptable solution at A1(b). The Bushfire Hazard Management Plan is certified by an accredited person.
C13.6.3 Subdivision: Provision of water supply for firefighting purposes	The subdivision is not serviced by a reticulated water supply system. Static water supplies for all lots are required and have been specified in accordance with table C13.5 and are shown on the BHMP. The proposal is compliant with the acceptable solution at A2(b)

6.2 Building Compliance (for future development)

Future residential development may not require assessment for bushfire management requirements at the planning application stage. Subsequent building applications will require demonstrated compliance with the Directors Determination. If future development is undertaken in compliance with the Bushfire Hazard Management Plan associated with this report, a building surveyor may rely upon it for building compliance purposes if it is not more than 6 years old.

7.0 Summary

The proposed development occurs within a bushfire-prone area. The vegetation is classified as Grassland, with the highest risk presented by vegetation to the south and south-west of the building areas on lots 7 and 8.

A bushfire hazard management plan has been developed and shows building areas with hazard management areas and construction standards, the location of new public roadways and proposed property accesses and requirements for the provision of firefighting water supplies.

Additional planning compliance requirements are necessary for lots 9 & 16:

- Lots 9 and 16 have existing residential development and will require the establishment of hazard management areas prior to sealing of titles.
- A static firefighting water supply will be required prior to the sealing of titles for lots 9 and 16
- Any new property access work for lots 9 & 16 will need to comply with the specifications of s5.2.2.1.

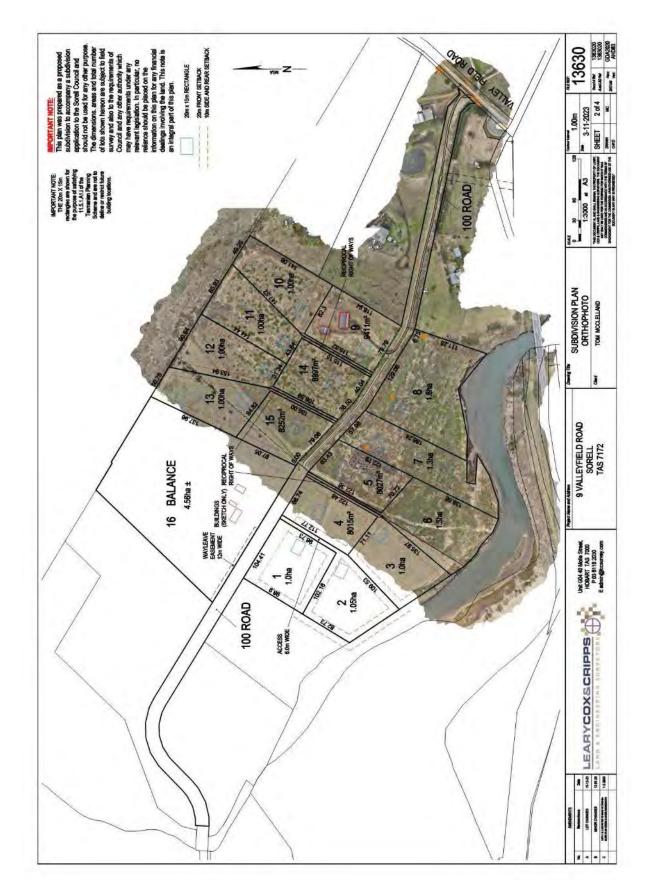
8.0 Limitations Statement

This Bushfire Hazard Report has been prepared in accordance with the scope of services between Geo-Environmental Solutions Pty. Ltd. (GES) and the applicant. To the best of GES's knowledge, the information presented herein represents the Client's requirements at the time of printing of the report. However, the passage of time, manifestation of latent conditions or impacts of future events may result in findings differing from that described in this report. In preparing this report, GES has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations referenced herein. Except as otherwise stated in this report, GES has not verified the accuracy or completeness of such data, surveys, analyses, designs, plans and other information.

The scope of this study does not allow for the review of every possible bushfire hazard condition and does not provide a guarantee that no loss of property or life will occur as a result of bushfire. As stated in AS3959-2018 "It should be borne in mind that the measures contained in this Standard cannot guarantee that a building will survive a bushfire event on every occasion. This is substantially due to the degree of vegetation management, the unpredictable nature and behaviour of fire, and extreme weather conditions". In addition, no responsibility is taken for any loss which is a result of actions contrary to AS3959-2018 or the Tasmanian Planning Commission Bushfire code.

This report does not purport to provide legal advice. Readers of the report should engage professional legal practitioners for this purpose as required. No responsibility is accepted for use of any part of this report in any other context or for any other purpose by third party.

9.0 References


Building Regulations 2016 (Tas.) Division 6.

Determination, Director of Building Control – Bushfire-Hazard Areas. Version 1.1, April 2021. Consumer, Building and Occupational Services, Department of Justice, Tasmania

Standards Australia 2018, *Construction of buildings in bushfire prone areas,* Standards Australia, Sydney.

Tasmanian Planning Scheme – State Planning Provisions. C13 Bushfire-prone Areas Code. Tasmanian Planning Commission, Hobart. 2022.

Appendix A - Site Plan

Appendix B – BAL Assessment tables

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	>0 to 5° downslope	0 to 100 metres		
North				20 metres	BAL-12.5
	Grassland^	upslope	0 to 100 metres		
Fact				1.4	DAL 49.5
East				14 metres	BAL-12.5
	Grassland^	>10° to 15° downslope	0 to >100 metres		
Qavith					
South				22 metres	BAL-12.5
	Grassland^	>0 to 5° downslope	0 to 100 metres		BAL-12.5
Weet				16 motros	
West				16 metres	

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	upslope	0 to 100 metres		
Newth				20 m atras	
North				20 metres	BAL-12.5
	Grassland^	upslope	0 to 100 metres		
Fact				14	BAL-12.5
East				14 metres	
	Grassland^	>10° to 15° downslope	0 to 100 metres		
Courth					BAL-12.5
South				22 metres	
	Grassland^	>15° to 20° downslope	0 to 100 metres		
) Maat				0E metree	
West				25 metres	BAL-12.5

Table 2. Bushfire Attack Level (BAL) Assessment for Lot 2

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	upslope	0 to 100 metres		
Novth cost				00 m otro o	
North-east				20 metres	BAL-12.5
	Grassland^	>5° to 10° downslope	0 to 100 metres		
Courth cost				10 m otro o	BAL-12.5
South-east				19 metres	
	Grassland^	>5° to 10° downslope	0 to 70 metres		
Couth woot	Grassland^	excluded >20°	70 to 100 metres	10 motros	BAL-12.5
South-west				19 metres	
	Grassland^	>10° to 15° downslope	0 to 100 metres		
North-west				22 metres	BAL-12.5

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	upslope	0 to 100 metres		
				00	
North-east				20 metres	BAL-12.5
	Grassland^	upslope	0 to 50 metres		
0	Scrub^	upslope	50 to 80 metres	4.4	BAL-12.5
South-east	Grassland^	upslope	80 to 100 metres	14 metres	
	Grassland^	>10° to 15° downslope	0 to 100 metres		
Courth we of					BAL-12.5
South-west				22 metres	
	Grassland^	>0 to 5° downslope	0 to 100 metres		
				10	
North-west				16 metres	BAL-12.5

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	upslope	0 to 100 metres		
No.44 cont				00	
North-east				20 metres	BAL-12.5
	Scrub^	upslope	0 to 40 metres		
	Grassland [^]	upslope	40 to 100 metres		
South-east				19 metres	BAL-19
	Grassland [^]	>15° to 20° downslope	0 to 100 metres		
Couth woot				17 metres	BAL-19
South-west				17 metres	
	Grassland^	>10° to 15° downslope	0 to 100 metres		
N a with successful				4.5. ma atma a	
North-west				15 metres	BAL-19

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	upslope	0 to 20 metres		
	Scrub [^]	upslope	20 to 80 metres		
North-east	Grassland [^]	flat 0°	80 to 100 metres	20 metres	BAL-19
	Grassland^	>15° to 20° downslope	0 to 80 metres		
	Exclusion 2.2.3.2 (e, f)^^	flat 0°	80 to >100 metres		BAL-19
South-east				17 metres	
	Grassland [^]	>10° to 15° downslope	0 to 100 metres		
South-				45	BAL-19
west				15 metres	
	Grassland [^]	flat 0°	0 to 100 metres		
North-					
west				10 metres	BAL-19

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	flat 0°	0 to 100 metres		
No.446 a set				20 m otro o	
North-east				20 metres	BAL-12.5
	Grassland^	flat 0°	0 to 44 metres		
O suth s s s t	Grassland [^]	>15° to 20° downslope	44 to 100 metres	10	BAL-19
South-east				10 metres	
	Grassland [^]	>15° to 20° downslope	0 to 52 metres		
0	Grassland [^]	29° downslope	52 to 76 metres	47	
South-west	Grassland [^]	13° downslope	76 to 100 metres	17 metres	BAL-19
	Grassland [^]	>5° to 10° downslope	0 to >100 metres		
				10	
North-west				13 metres	BAL-19

Vegetation classification as per AS3959-2018 and Figures 2.4 (A) to 2.4 (H).
 ** Exclusions as per AS3959-2018, section 2.2.3.2, (a) to (f).

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	upslope	0 to 100 metres		
North coot	-			20 motros	DAL 425
North-east				20 metres	BAL-12.5
	Grassland^	flat 0°	0 to 100 metres		BAL-19
				10 m of m o	
South-east				10 metres	
	-				
	Grassland^	>15° to 20° downslope	0 to 52 metres		BAL-19
South-	Grassland^	32°	52 to 68 metres	47 m otro o	
west	Exclusion 2.2.3.2 (e, f)^^	>15° to 20° downslope	68 to >100 metres	17 metres	
	-				
North- west	Grassland^	>0 to 5° downslope	0 to 53 metres		
	Grassland^	>5° to 10° downslope	53 to 100 metres	11	
	-			11 metres	BAL-19

Table 8. Bushfire Attack Level (BAL) Assessment for Lot 8

Vegetation classification as per AS3959-2018 and Figures 2.4 (A) to 2.4 (H).
 ** Exclusions as per AS3959-2018, section 2.2.3.2, (a) to (f).

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland^	flat 0°	0 to 75 metres		
	Grassland [^]	>0 to 5° downslope	75 to 100 metres		
North				14 metres	BAL-12.5
	Grassland^	>10° to 15° downslope	0 to 100 metres		BAL-12.5
East				00	
				22 metres	
	Grassland [^]	>5° to 10° downslope	0 to 100 metres		BAL-12.5
South				19 metres	
South				19 metres	
	Grassland [^]	>5° to 10° downslope	0 to 100 metres		
West				10 metres	DAL 40.5
				19 metres	BAL-12.5

Table 9. Bushfire Attack Level (BAL) Assessment for Lot 9 - existing residential development

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	>10° to 15° downslope	0 to 100 metres		
	-			00	
North-east				22 metres	BAL-12.5
	Grassland [^]	>5° to 10° downslope	0 to 100 metres		BAL-12.5
South-east					
				19 metres	
	Grassland [^]	flat 0°	0 to 50 metres		BAL-12.5
South-					
west				20 metres	
	Grassland [^]	>5° to 10° downslope	0 to 100 metres		
North-					
west				19 metres	BAL-12.5

Table 10. Bushfire Attack Level (BAL) Assessment for Lot 10

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	>10° to 15° downslope	0 to 100 metres		
				45	
North-east				15 metres	BAL-19
	Grassland^	upslope	0 to 60 metres		BAL-19
South-east	Grassland^	>5° to 10° downslope	60 to 100 metres		
				10 metres	
	Grassland [^]	flat 0°	0 to 100 metres		BAL-12.5
South-					
west				20 metres	
	-				
	Grassland [^]	>5° to 10° downslope	0 to 100 metres		
North-					
west				13 metres	BAL-19
F					

Table 11. Bushfire Attack Level (BAL) Assessment for Lot 11

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	>10° to 15° downslope	0 to 100 metres		
				45	
North-east				15 metres	BAL-12.5
-					
	Grassland^	upslope	0 to 100 metres		BAL-19
South-east				10 metres	
-					
	Grassland [^]	flat 0°	0 to 100 metres		BAL-12.5
South-					
west				20 metres	
North- west	Grassland [^]	>5° to 10° downslope	0 to 100 metres		
				10	
				13 metres	BAL-19

Table 12. Bushfire Attack Level (BAL) Assessment for Lot 12

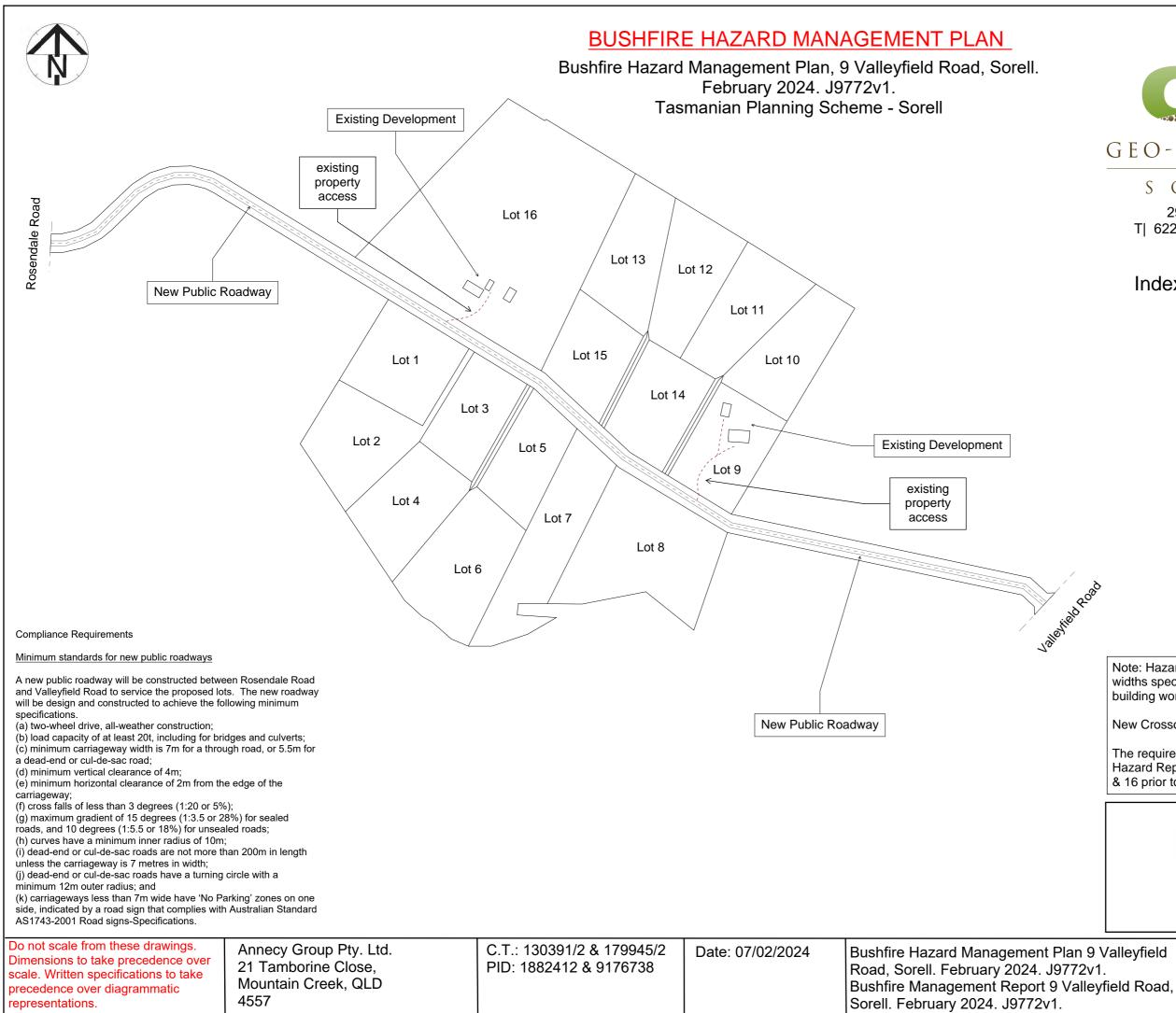
Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	>10° to 15° downslope	0 to 100 metres		
				00	
North-east				22 metres	BAL-12.5
-					
	Grassland^	upslope	0 to 100 metres		BAL-12.5
South-east				4.4	
				14 metres	
-					
	Grassland [^]	flat 0°	0 to 100 metres		BAL-12.5
South-					
west				20 metres	
	Grassland [^]	>0 to 5° downslope	0 to 100 metres		
North- west				10	
				16 metres	BAL-12.5

Table 13. Bushfire Attack Level (BAL) Assessment for Lot 13

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	flat 0°	0 to 100 metres		
North-east				14 metres	BAL-12.5
	Grassland^	upslope	0 to 75 metres		BAL-12.5
South-east	Grassland^	>0 to 5° downslope	75 to 100 metres		
				14 metres	
	Grassland [^]	>0 to 5° downslope	0 to 100 metres		BAL-12.5
South-				00	
west				20 metres	
-					
	Grassland [^]	>0 to 5° downslope	0 to 100 metres		
North- west					
				16 metres	BAL-12.5

Table 14. Bushfire Attack Level (BAL) Assessment for Lot 14

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	flat 0°	0 to 100 metres		
				4.4	
North-east				14 metres	BAL-12.5
	Grassland [^]	upslope	0 to 100 metres		BAL-12.5
South-east					
				14 metres	
	Grassland [^]	flat 0°	0 to 100 metres		BAL-12.5
South-					
west				20 metres	
	Grassland [^]	>0 to 5° downslope	0 to 100 metres		
North- west				10	BAL-12.5
				16 metres	


Table 15. Bushfire Attack Level (BAL) Assessment for Lot 15

Azimuth	Vegetation Classification	Effective Slope	Distance to Bushfire-prone vegetation	Hazard management area width	Bushfire Attack Level
	Grassland [^]	flat 0°	0 to 100 metres		
North-east				14 metres	BAL-12.5
	-				
	Grassland [^]	upslope	0 to 100 metres		BAL-12.5
South-east					
				14 metres	
	Grassland^	>0 to 5° downslope	0 to 100 metres		BAL-12.5
South-				10	
west				16 metres	
	Grassland^	>0 to 5° downslope	0 to 100 metres		
North- west				10	
				16 metres	BAL-12.5

Table 16. Bushfire Attack Level (BAL) Assessment for Lot 16 - existing residential development

Appendix C

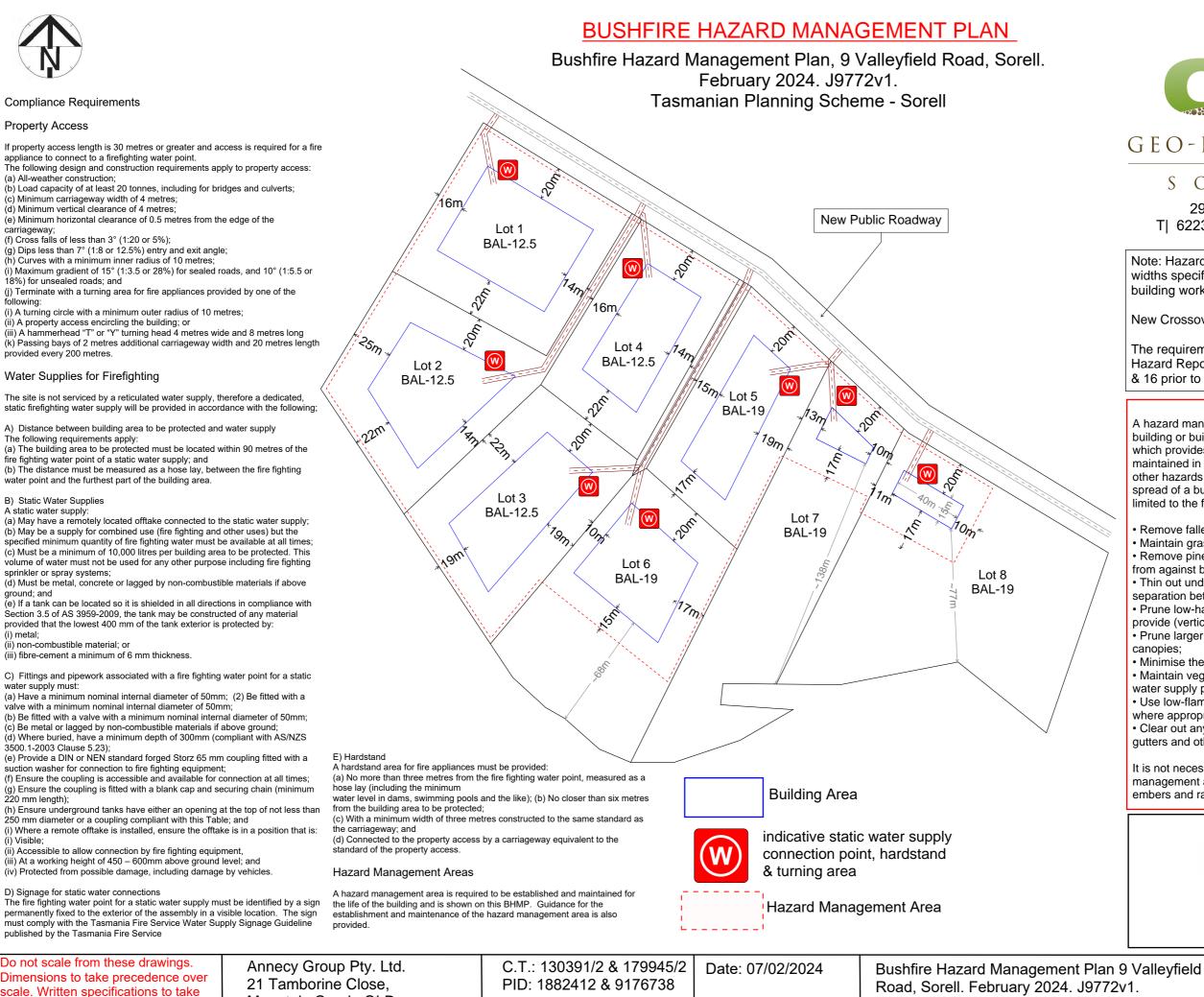
Bushfire Hazard Management Plan

Index and Public Access Plan

Note: Hazard management areas to be established to widths specified for each lot from the facades of the new building work.

New Crossovers subject to final civil design.

The requirements of sections 5.1, 5.2, 5.3 of the Bushfire Hazard Report are required to be implemented for lots 9 & 16 prior to the sealing of titles.


Certification No. J9772

Muladertra

Mark Van den Berg Acc. No. BFP-108 Scope 1, 2, 3A, 3B, 3C.

Drawing Number: A01

Sheet 1 of 4 Prepared by: MvdB

Mountain Creek, QLD 4557

precedence over diagrammatic

representations.

Road, Sorell. February 2024. J9772v1. Bushfire Management Report 9 Valleyfield Road, Sorell. February 2024. J9772v1.

GEO-ENVIRONMENTAL

SOLUTIONS

29 Kirksway Place, Battery Point. T| 62231839 E| office@geosolutions.net.au

Note: Hazard management areas to be established to widths specified for each lot from the facades of the new building work.

New Crossovers subject to final civil design.

The requirements of sections 5.1, 5.2, 5.3 of the Bushfire Hazard Report are required to be implemented for lots 9 & 16 prior to the sealing of titles.

Hazard Management Area

A hazard management area is the area, between a habitable building or building area and the bushfire prone vegetation, which provides access to a fire front for firefighting, which is maintained in a minimal fuel condition and in which there are no other hazards present which will significantly contribute to the spread of a bushfire. This can be achieved through, but is not limited to the following actions;

• Remove fallen limbs, sticks, leaf and bark litter;

Maintain grass at less than a 100mm height;

• Remove pine bark and other flammable mulch (especially from against buildings);

· Thin out under-story vegetation to provide horizontal separation between fuels;

• Prune low-hanging tree branches (<2m from the ground) to provide (vertical separation between fuel layers;

 Prune larger trees to maintain horizontal separation between canopies;

· Minimise the storage of flammable materials such as firewood; · Maintain vegetation clearance around vehicular access and water supply points;

 Use low-flammability species for landscaping purposes where appropriate:

· Clear out any accumulated leaf and other debris from roof gutters and other accumulation points.

It is not necessary to remove all vegetation from the hazard management area, trees may provide protection from wind borne embers and radiant heat under some circumstances.

Certification No. J9772

Muladistra

Mark Van den Berg Acc. No. BFP-108 Scope 1, 2, 3A, 3B, 3C.

Drawing Number: A01

Sheet 2 of 4 Prepared by: MvdB

Compliance Requirements

Property Access

If property access length is 30 metres or greater and access is required for a fire appliance to connect to a firefighting water point. The following design and construction requirements apply to property access: (a) All-weather construction

(b) Load capacity of at least 20 tonnes, including for bridges and culverts; (c) Minimum carriageway width of 4 metres:

(d) Minimum vertical clearance of 4 metres:

(e) Minimum horizontal clearance of 0.5 metres from the edge of the carriadeway:

(f) Cross falls of less than 3° (1:20 or 5%);

(g) Dips less than 7° (1:8 or 12.5%) entry and exit angle;

(h) Curves with a minimum inner radius of 10 metres; (i) Maximum gradient of 15° (1:3.5 or 28%) for sealed roads, and 10° (1:5.5 or 18%) for unsealed roads: and

(j) Terminate with a turning area for fire appliances provided by one of the following.

(i) A turning circle with a minimum outer radius of 10 metres; (ii) A property access encircling the building; or (iii) A hammerhead "T" or "Y" turning head 4 metres wide and 8 metres long (k) Passing bays of 2 metres additional carriageway width and 20 metres length provided every 200 metres

Water Supplies for Firefighting

The site is not serviced by a reticulated water supply, therefore a dedicated, static firefighting water supply will be provided in accordance with the following;

A) Distance between building area to be protected and water supply The following requirements apply:

(a) The building area to be protected must be located within 90 metres of the fire fighting water point of a static water supply; and (b) The distance must be measured as a hose lay, between the fire fighting

vater point and the furthest part of the building area

B) Static Water Supplies

A static water supply: (a) May have a remotely located offtake connected to the static water supply (b) May be a supply for combined use (fire fighting and other uses) but the specified minimum quantity of fire fighting water must be available at all times (c) Must be a minimum of 10,000 litres per building area to be protected. This volume of water must not be used for any other purpose including fire fighting sprinkler or spray systems

(d) Must be metal, concrete or lagged by non-combustible materials if above around: and

(e) If a tank can be located so it is shielded in all directions in compliance with Section 3.5 of AS 3959-2009, the tank may be constructed of any material provided that the lowest 400 mm of the tank exterior is protected by (i) metal;

(ii) non-combustible material; or

(iii) fibre-cement a minimum of 6 mm thickness.

C) Fittings and pipework associated with a fire fighting water point for a static water supply must

(a) Have a minimum nominal internal diameter of 50mm; (2) Be fitted with a valve with a minimum nominal internal diameter of 50mm;

(b) Be fitted with a valve with a minimum nominal internal diameter of 50mm;

(c) Be metal or lagged by non-combustible materials if above ground; (d) Where buried, have a minimum depth of 300mm (compliant with AS/NZS

3500 1-2003 Clause 5 23)

(e) Provide a DIN or NEN standard forged Storz 65 mm coupling fitted with a suction washer for connection to fire fighting equipment;

(f) Ensure the coupling is accessible and available for connection at all times; (g) Ensure the coupling is fitted with a blank cap and securing chain (minimum 220 mm length);

(h) Ensure underground tanks have either an opening at the top of not less than (c) With a minimum width of three metres constructed to the same standard as 250 mm diameter or a coupling compliant with this Table; and the carriageway; and (i) Where a remote offtake is installed, ensure the offtake is in a position that is: (d) Connected to the property access by a carriageway equivalent to the

(i) Visible; (ii) Accessible to allow connection by fire fighting equipment,

(iii) At a working height of 450 - 600mm above ground level; and

(iv) Protected from possible damage, including damage by vehicles.


D) Signage for static water connections

The fire fighting water point for a static water supply must be identified by a sign establishment and maintenance of the hazard management area is also permanently fixed to the exterior of the assembly in a visible location. The sign provided must comply with the Tasmania Fire Service Water Supply Signage Guideline published by the Tasmania Fire Service

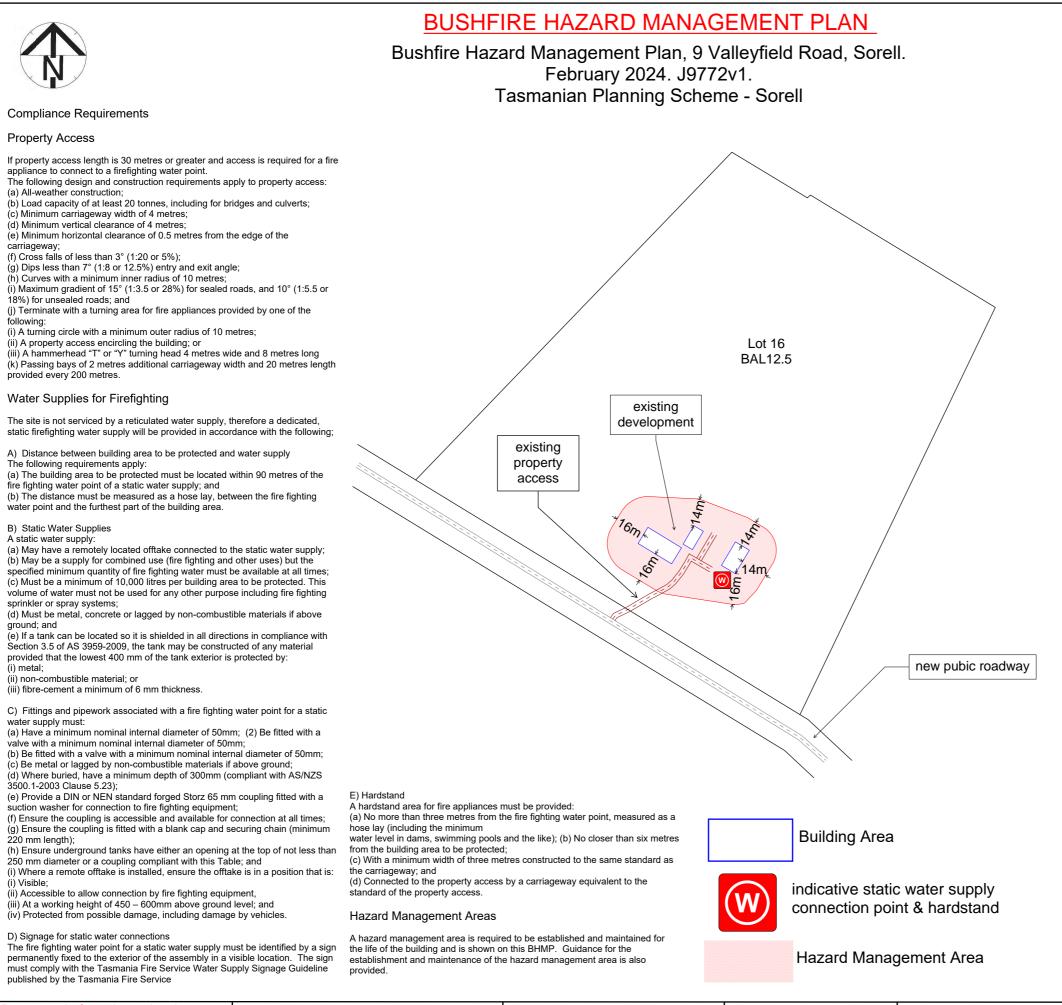
Do not scale from these drawings. Dimensions to take precedence over 21 Tamborine Close. scale. Written specifications to take Mountain Creek, QLD precedence over diagrammatic 4557 representations.

C.T.: 130391/2 & 179945/2 Date: 07/02/2024 PID: 1882412 & 9176738

Bushfire Hazard Management Plan 9 \ Road, Sorell. February 2024. J9772v1 **Bushfire Management Report 9 Valley** Sorell. February 2024. J9772v1.

Building Area

indicative static water supply connection point, hardstand & turning area


Hazard Management Area

Note: Hazard management areas to be established to widths specified for each lot from the facades of the new building work.

New Crossovers subject to final civil design.

The requirements of sections 5.1, 5.2, 5.3 of the Bushfire Hazard Report are required to be implemented for lots 9 & 16 prior to the sealing of titles.

-	-			
Hazard Management Area A hazard management area is the area, between a habitable building or building area and the bushfire prone vegetation, which provides access to a fire front for firefighting, which is maintained in a minimal fuel condition and in which there are no other hazards present which will significantly contribute to the spread of a bushfire. This can be achieved through, but is not limited to the following actions;				
embers and radian	t heat under some circums	stances.		
Certification No. J9772 Mark Van den Berg Acc. No. BFP-108 Scope 1, 2, 3A, 3B, 3C.				
L Valleyfield Drawing Number: Sheet 3 of 4 A01 Prepared by: MvdB				

				L
Do not scale from these drawings. Dimensions to take precedence over scale. Written specifications to take precedence over diagrammatic representations.	Annecy Group Pty. Ltd. 21 Tamborine Close, Mountain Creek, QLD 4557	C.T.: 130391/2 & 179945/2 PID: 1882412 & 9176738	Date: 07/02/2024	Bushfire Hazard Management Plan 9 V Road, Sorell. February 2024. J9772v1. Bushfire Management Report 9 Valleyf Sorell. February 2024. J9772v1.

GEO-ENVIRONMENTAL

S O L U T I O N S

29 Kirksway Place, Battery Point. T| 62231839 E| office@geosolutions.net.au

Note: Hazard management areas to be established to widths specified for each lot from the facades of the new building work.

New Crossovers subject to final civil design.

The requirements of sections 5.1, 5.2, 5.3 of the Bushfire Hazard Report are required to be implemented for lots 9 & 16 prior to the sealing of titles.

Hazard Management Area

A hazard management area is the area, between a habitable building or building area and the bushfire prone vegetation, which provides access to a fire front for firefighting, which is maintained in a minimal fuel condition and in which there are no other hazards present which will significantly contribute to the spread of a bushfire. This can be achieved through, but is not limited to the following actions;

• Remove fallen limbs, sticks, leaf and bark litter;

· Maintain grass at less than a 100mm height;

• Remove pine bark and other flammable mulch (especially from against buildings);

• Thin out under-story vegetation to provide horizontal separation between fuels;

• Prune low-hanging tree branches (<2m from the ground) to provide (vertical separation between fuel layers;

Prune larger trees to maintain horizontal separation between canopies;

Minimise the storage of flammable materials such as firewood;
Maintain vegetation clearance around vehicular access and water supply points;

• Use low-flammability species for landscaping purposes where appropriate;

• Clear out any accumulated leaf and other debris from roof gutters and other accumulation points.

It is not necessary to remove all vegetation from the hazard management area, trees may provide protection from wind borne embers and radiant heat under some circumstances.

Certification No. J9772

Muladistra

Mark Van den Berg Acc. No. BFP-108 Scope 1, 2, 3A, 3B, 3C.

9 Valleyfield

Drawing Number: A01 Sheet 4 of 4 Prepared by: MvdB

leyfield Road,

Appendix D

Planning Certificate

BUSHFIRE-PRONE AREAS CODE

CERTIFICATE¹ UNDER S51(2)(d) LAND USE PLANNING AND APPROVALS ACT 1993

1. Land to which certificate applies

The subject site includes property that is proposed for use and development and includes all properties upon which works are proposed for bushfire protection purposes.

Street address:	9 Valleyfield Road & 123 Rosendale Road, Sorell	
Certificate of Title / PID:	179945/2 & 130391/2	
2. Proposed Use or Develop	oment	
Description of proposed Use and Development:	Sixteen lot subdivision with construction of new public roadway	
Applicable Planning Scheme: Tasmanian Planning Scheme – Sorell		

3. Documents relied upon

This certificate relates to the following documents:

Title	Author	Date	Version
Plan of Subdivision	Leary, Cox & Crips	03/11/2023	1363020
Bushfire Hazard Report 9 Valleyfield Road, Sorell February 2024. J9772v1	Mark Van den Berg	07/02/2024	1
Bushfire Hazard Management Plan 9 Valleyfield Road, Sorell February 2024. J9772v1	Mark Van den Berg	07/02/2024	1

¹ This document is the approved form of certification for this purpose and must not be altered from its original form.

4. Nature of Certificate

The following requirements are applicable to the proposed use and development:

E1.4 / C13.4 – Use or development exempt from this Code		
Compliance test Compliance Requirement		
E1.4(a) / C13.4.1(a)	Insufficient increase in risk	

E1.5.1 / C13.5.1 – Vulnerable Uses		
Acceptable Solution Compliance Requirement		
E1.5.1 P1 / C13.5.1 P1	Planning authority discretion required. A proposal cannot be certified as compliant with P1.	
E1.5.1 A2 / C13.5.1 A2	Emergency management strategy	
E1.5.1 A3 / C13.5.1 A2	Bushfire hazard management plan	

E1.5.2 / C13.5.2 – Hazardous Uses		
Acceptable Solution Compliance Requirement		
E1.5.2 P1 / C13.5.2 P1	Planning authority discretion required. A proposal cannot be certified as compliant with P1.	
E1.5.2 A2 / C13.5.2 A2	Emergency management strategy	
E1.5.2 A3 / C13.5.2 A3	Bushfire hazard management plan	

	E1.6.1 / C13.6.1 Subdivision: Provision of hazard management areas		
	Acceptable Solution Compliance Requirement		
	E1.6.1 P1 / C13.6.1 P1	Planning authority discretion required. A proposal cannot be certified as compliant with P1.	
	E1.6.1 A1 (a) / C13.6.1 A1(a)	Insufficient increase in risk	
\boxtimes	E1.6.1 A1 (b) / C13.6.1 A1(b)	Provides BAL-19 for all lots (including any lot designated as 'balance').	
	E1.6.1 A1(c) / C13.6.1 A1(c)	Consent for Part 5 Agreement	

E1.6.2 / C13.6.2 Subdivision: Public and fire fighting access		
Acceptable Solution Compliance Requirement		
E1.6.2 P1 / C13.6.2 P1	Planning authority discretion required. A proposal cannot be certified as compliant with P1.	
E1.6.2 A1 (a) / C13.6.2 A1 (a)	Insufficient increase in risk	
E1.6.2 A1 (b) / C13.6.2 A1 (b)	Access complies with relevant Tables	

E1.6.3 / C13.1.6.3 Subdivision: Provision of water supply for fire fighting purposes			
Acceptable Solution Compliance Requirement			
E1.6.3 A1 (a) / C13.6.3 A1 (a)	Insufficient increase in risk		
E1.6.3 A1 (b) / C13.6.3 A1 (b)	Reticulated water supply complies with relevant table.		
E1.6.3 A1 (c) / C13.6.3 A1 (c)	Water supply consistent with the objective		
E1.6.3 A2 (a) / C13.6.3 A2 (a)	Insufficient increase in risk		
E1.6.3 A2 (b) / C13.6.3 A2 (b)	Static water supply complies with relevant Table		
E1.6.3 A2 (c) / C13.6.3 A2 (c)	Static water supply consistent with the objective		

5. Bu	shfire Hazard Practitioner		
Name:	Mark Van den Berg	Phone No:	03 62231839
Postal Address:	29 Kirksway Place Battery Point Tas. 7004	Email Address:	mvandenberg@geosolutions.net.au
Accreditati	on No: BFP – 108	Scope:	1, 2, 3a, 3b & 3c

6. Certification

 \boxtimes

I certify that in accordance with the authority given under Part 4A of the *Fire Service Act 1979* that the proposed use and development:

Is exempt from the requirement Bushfire-Prone Areas Code because, having regard to the objective of all applicable standards in the Code, there is considered to be an insufficient increase in risk to the use or development from bushfire to warrant any specific bushfire protection measures, or

The Bushfire Hazard Management Plan/s identified in Section 3 of this certificate is/are in accordance with the Chief Officer's requirements and compliant with the relevant **Acceptable Solutions** identified in Section 4 of this Certificate.

Signed: certifier	Madala		
Name:	Mark Van den Berg		07/02/2024
		Certificate Number:	J9772
		(for Practitio	ner Use only)

p: 6220 1336 e: <u>team@integralengineers.com.au</u> w: <u>www.integralengineers.com.au</u> a: Suite 21, 11 Morrison St, Hobart 7000 ABN: 23 627 152 041

STORMWATER ASSESSMENT

FOR A PROPOSED 15 LOT SUBDIVISION AT

9 VALLEYFIELD RD, SORELL & 123 ROSENDALE RD, SORELL

I.C.E. Project No: 23201

Client name: Tom McLelland

Document No. 23201-03 (Rev A)

10/04/2024

Document Approved by:

Stephen Cole BEng (Civil & Environmental) CPEng Principal Civil / Structural Engineer Integral Consulting Engineers Pty Ltd *WST Accreditation: Engineer Civil CC5900 T*

Development Application: Response to Request for Information - 9 Valleyfield Rd & 123 Rosendale Rd, Sorell.pdf Plans Reference: P5 Date Received: 12/04/2024_

1. Introduction

This stormwater management report presents a hydrological analysis of the proposed stormwater infrastructure for the 9 Valleyfield Road Subdivision in Sorell. It evaluates the effects of post-development conditions on stormwater runoff. Calculations for the assessment have been done using Civil 3d software by Autodesk.

The analysis is based on simulations of the 1% Annual Exceedance Probability (AEP) rainfall event, incorporating climate change considerations. These simulations were conducted using Autodesk's Civil 3D software. The design of all drainage infrastructure is optimized for this specific rainfall event. Consequently, no calculations are provided for the (minor) 5% AEP rainfall event.

Appendices include plots generated by the design software, and this report references key findings from both the assessment and those plots. Furthermore, it outlines measures designed to mitigate damage and erosion to both the infrastructure and the receiving water bodies.

2. Stormwater Assessment Calculations

Calculations for the assessment have been done using Civil 3d software by Autodesk. The detailed results of these calculations are in the design drawings for the proposed development, 23201 H01 - H08, presented in Appendix 1.

The data behind these calculations is presented in Appendix 2.

3. Existing Site Conditions and Stormwater Runoff

Site overview

The proposed development consists of two properties, 9 Valleyfield Rd and 123 Rosendale Rd, Sorell. The total area of these properties is 17.3Ha.

The existing site is covered by predominantly pasture with some patches of exposed rock, weeds, and in the south east corner of the site, very steep slopes with exposed rock.

There is also currently one house and three sheds on the site.

Aspect varies between westerly and southerly. Slope varies from flat at the top of the hill, to 25% fall outside of the landslide hazard areas, and up to 50% (1 in 2) in the Landslide hazard areas.

There is good natural surface drainage over the site.

The average annual rainfall approx. 495mm (source: BOM Hobart Airport station, 10km away from the site)

There is no reticulated water or sewer to the site.

Soil Conditions:

Six test holes were augered using a 75mm hand auger to get a representation of soil conditions at the site. Test Hole Results are presented in table 1 below.

Description	TH1	TH2	TH3	TH4	TH5	TH6
Sandy topsoil, dry and clayey	0 - 0.13	0-0.06	0-0.2	0 -0.18	0-0.23	0-0.17
Clay, dark brown, very stiff	0.13 –	0.06 –	0.2 –	0.18 –		0.17 –
	0.54	0.32	0.48	0.54		0.82
Sandy clay, loose and crumbly	0.54 –	0.32 –	0.48 –	0.54 –		0
	0.6	0.46	0.6	0.6		
Refusal on assumed rock base	0.6	0.46	0.6	0.6	0.23	0.82

Table 1: Soil Test Hole Results

The soils consist of a thin layer of clayey topsoil, a heavy clay subsoil then rock. The depth to rock in the test holes varied from minimum 0.23m, to maximum 0.82m. Some small patches of rock outcrop were visible on the surface.

Pre development Run-off

Run-off from the current site follows the existing natural drainage lines as sheet surface flows. An exception to this is where there is the vehicle access running east west through the property. This would discharge some concentrated water. The concentrated water would flow through the property and discharge into Iron Creek, and does not flow through any neighbouring properties.

The estimated pre-development surface water run-off leaving the site for the1% AEP event is: 2.82m3/sec. This includes a 15% increase in rainfall intensity to allow for the effects of climate change.

The catchment that flows into the culvert on the access road to the development is not part of the subject property. For simplicity this area has still been included in the pre and post development calculations. The reasoning for this is it only contributes a small proportion of the contributing catchment, the catchment conditions do not change as a result of the development.

4. Stormwater Runoff from the Proposed Development

Changes to the catchment conditions:

The proposed subdivision works and the associated development of the lots will result in the following changes to the catchment conditions for the site:

New sealed road crossing the site from approximately east to west.

New driveways, dwellings and possibly shed constructed on each lot.

Stormwater Runoff from Private Lots

Stormwater: Lots 1-3, 6, 9, 14 and 15 will be able to drain run-off from hardstand areas to the street frontage, Iron Creek, or a Council stormwater main passing through the property. The remainder of the lots will need to dispose of run-off from impervious areas on site.

An assessment for disposal of stormwater from roof areas has been done for the two lots that have more than half of the lot covered by a Landslide Hazard Overlay, Lots 7 and 8. Details for that assessment are shown in Appendix 3, and drawing H08 in Appendix 1. This assessment demonstrates that if onsite stormwater disposal is required in those lots, then there is sufficient space available for it outside of the landslide hazard areas, in addition to the onsite wastewater disposal areas.

All of the other lots have sufficient capacity for onsite stormwater disposal in addition to the onsite wastewater disposal areas.

Stormwater flows in the Landslide Hazard Areas

There will be no concentrated surface water flows discharging onto the Landslide Hazard areas as a result of the development. This is the case for stormwater from new public drainage infrastructure, and also from the private lots as referred to above.

The new road will intercept some of the existing surface water flows that flow toward the Landslide Hazard area, which will now drain via the roadside swale drain and then stormwater pipe to Iron Creek. This will reduce the amount of stormwater flowing in the Landslide Hazard area and reduce the risk of Landslide there.

Stormwater Treatment

Sorell Council's stormwater policy requires stormwater treatment from the development in accordance with the State Stormwater Strategy.

My opinion is that stormwater treatment infrastructure for this development would be impractical for Council to maintain. Furthermore, with the catchment to remain as mostly a previous catchment, the amount of pollutants removed would be minimal.

Comparison of Pre and Post Development Run-off

The estimated post-development surface water run-off leaving the site for the 1% AEP event is: 3.19m3/sec. This is an increase of 13% compared with the pre development amount.

5. Stormwater Infrastructure Capacity and Overland Flows

Stormwater Drainage Infrastructure

The stormwater drainage infrastructure for the subdivision consists of:

- Roadside swale drains
- Piped culverts under the road and vehicle accesses.
- DN750 pipe from the road to Iron Creek.

Results for the hydraulic calculations for all of these items are provided in Appendix 1. These results demonstrate that all of this infrastructure can contain all of stormwater flows through them, for the 1% AEP rainfall event plus a 15% increase in rainfall intensity to allow for the effects of climate change.

Overland Flows

The stormwater drainage infrastructure for the development has all been designed to convey the 1% AEP rainfall event (+15% for Climate Change), as described in the previous section. Therefore there will be no concentrated surface water flows leaving the site, other than from the pipe discharge into iron Creek.

Some of the development areas is within catchment areas that flow towards neighbouring property boundaries and not toward the new drainage infrastructure. This is the case for pre and post-development for these locations. This run off will be as sheet flow, and will not be concentrated.

Therefore all overland flows from the development can be discharged via gravity flows without concentrating runoff into adjoining properties.

6. Protection of Drainage Infrastructure and Erosion Control

There are two aspects of the drainage infrastructure that will require erosion prevention measured. How these are addressed in the drawings are described below:

Roadside swale drains

Roadside swale drains will be loamed and seeded with durable grass seed, and maintained until the grass is established. This is expected to be sufficient to prevent erosion in these areas.

Stormwater Pipe Discharge into Iron Creek

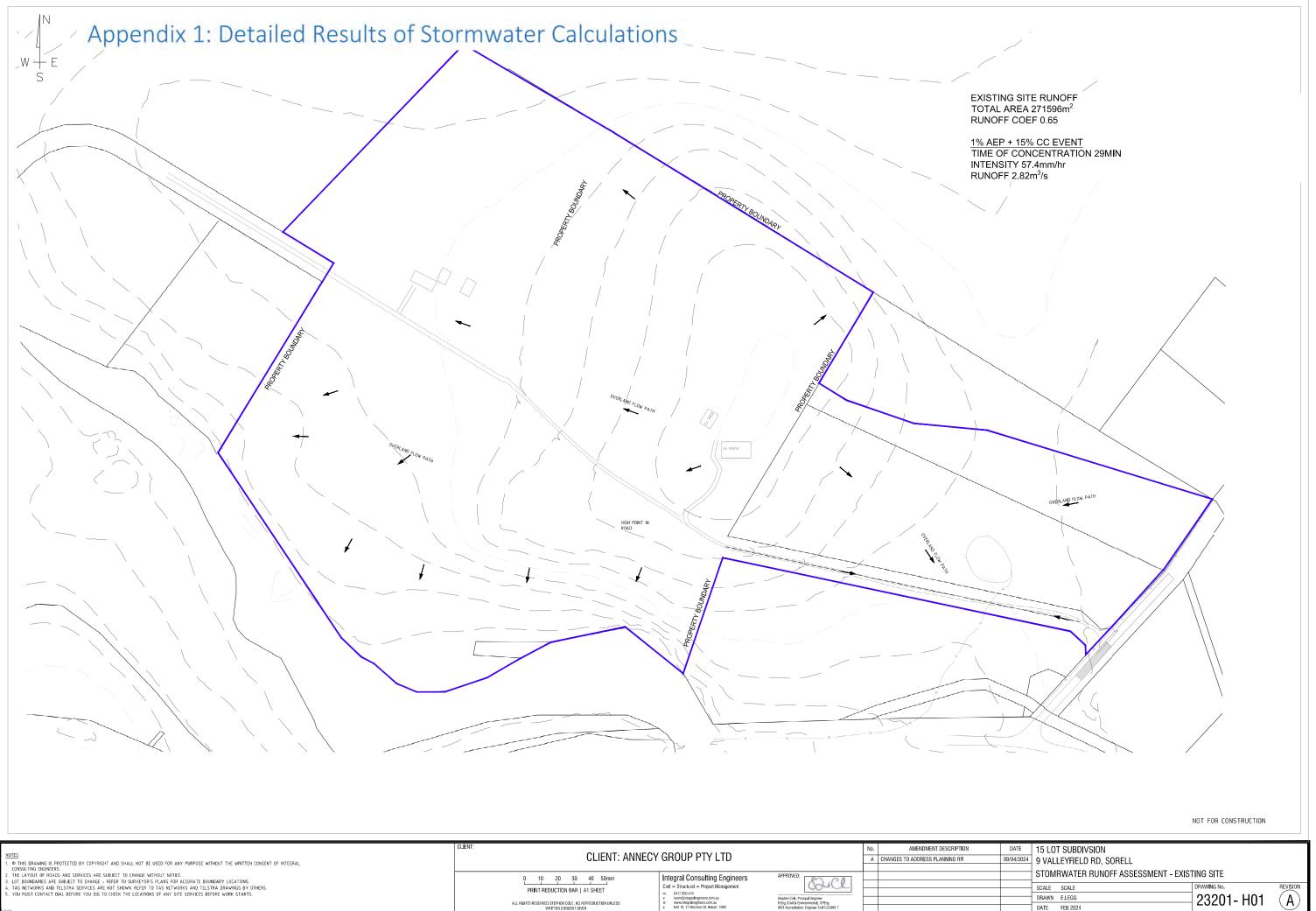
The design drawings have a DN750 stormwater pipe that discharges into Iron Creek. A rock mattress has been specified at the discharge location. This is expected to be sufficient to prevent erosion in this location.

7. Conclusion

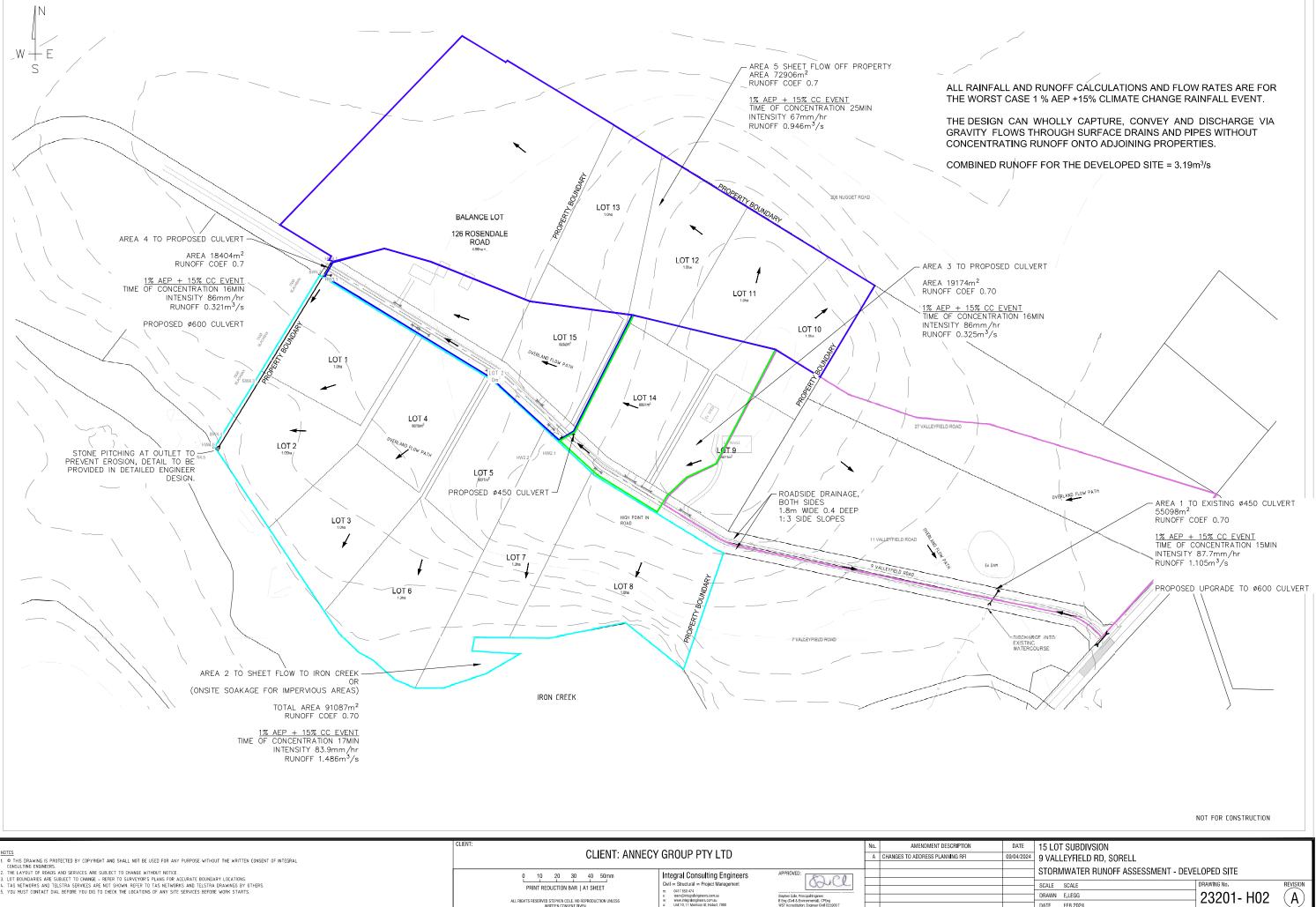
This report and the associated calculations demonstrate that the subdivision design drawings sufficiently address all of the stormwater management requirements with the exception of stormwater quality. This includes requirements for:

- Capacity of stormwater infrastructure;
- Management of overland flows for the 1% AEP rainfall event;
- Allowance for the effects of climate change;
- Prevention of erosion;
- Management of stormwater within the private lots;

My opinion is that treatment of stormwater quality for this development is impractical, and will carry a maintenance burden for the Council that is disproportionate to the benefit from having stormwater treatment. Therefore I request that this requirement be relaxed for this development.


8. Appendices

Appendix 1: Detailed Results of Stormwater Calculations


Appendix 2: Detailed Stormwater Calculations

Appendix 3: Stormwater Onsite Soakage System Assessment

Appendix 4: Photos

NOTES C 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CONSULTING ENUMEREN 2. DOUSLITING ENUMERENS 2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTCE 2. 3. LOT BOUNDARIES ARE SUBJECT TO CHANGE - REFER TO SUBVILYIOR'S PLANS FOR ACCURATE BOUNDARY LOCATIONS. 2. 4. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN. REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. 5. 5. YOU MUST CONTACT DAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS. 4.	CLIENT: ANNEC	' GROUP PTY LTD	-	No. A	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI 0	19
	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVED STEPHEN COLE: NO REPRODUCTION UNLESS WRITTINE COMERCY GARE	Integral Consulting Engineers Civil ∞ Structural ∞ Project Management m 047 80 474 e lasnopingedenpineers.com.au w www.titiggalenpineers.com.au w unt 10, 11 feblorada 3, Headan 7, 7000	APPROVED: Szephen Cole, Princopal Engineer B Eng (CVI & Environmental), CPEng WST Accelations: Engineer CVI ACC5900 T			-

This drawing is protected by copyright and shall not be used for any purpose without the written consent of integral sublinke engineers.	CLIENT: CLIENT: ANNEC	No. A	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	DATI 09/04/2		
 THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTCE LOT BOUNDARES ARE SUBJECT TO CHANGE AFERT O SURVEYOR'S FLANS FOR ACCURATE BOUNDARY LOCATIONS. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. YOU MUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS. 	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL REMTS RESERVED STEPHEN COLL: NO REPRODUCTION UNLESS WRITTEN CONSENT GIVEN	Integral Consulting Engineers Civil or Structural or Project Management interpretation of the Structural interpretation of the Structural	APPROVED: Septen Cale, Principal Engineer B Eng Cold & Environmental, CPEng WST Accreditation: Engineer Civil OC5900 T			

SW4.2

803

Ē

86

	<	HW1.1		HV	/1.2
PIPE DETAILS DATUM 18.00			600Ø RCP 0 9.21%	LASS 2	
PIPE FLOW			CALCULATED Q 1.105m	3/s	
HGL LEVEL - 1% AEP + CC EVENT		22.190		21.017	
INVERT LEVEL		21.895		20.722	
FINAL SURFACE LEVEL	22.945			21.897	
CHAINAGE	2.487		12.73m	15.221	

STORMWATER PIPE 1 LONGSECTION

HW2.1

35.985

35.794

719

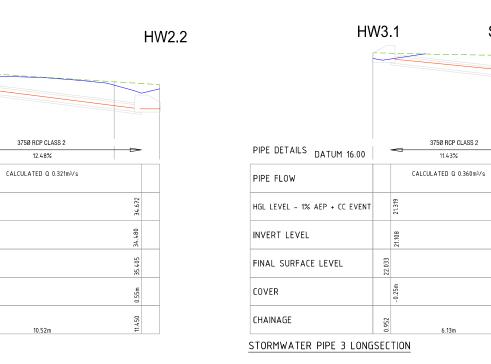
926

0.04m

PIPE DETAILS DATUM 32.00

HGL LEVEL - 1% AEP + CC EVENT

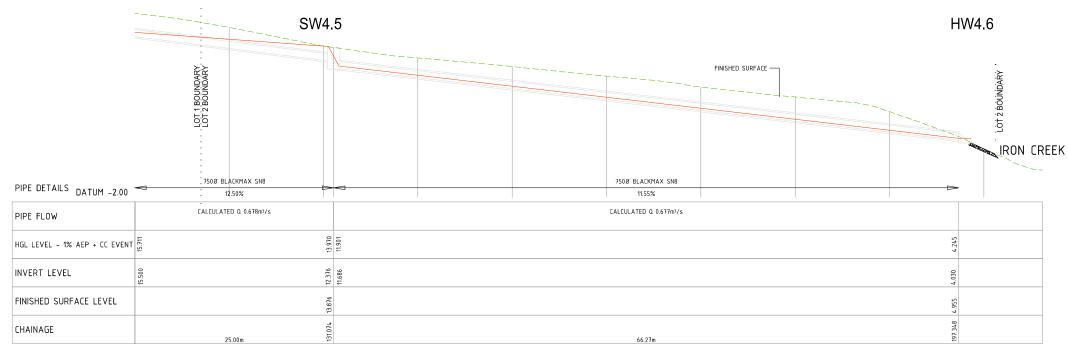
STORMWATER PIPE 2 LONGSECTION


PIPE FLOW

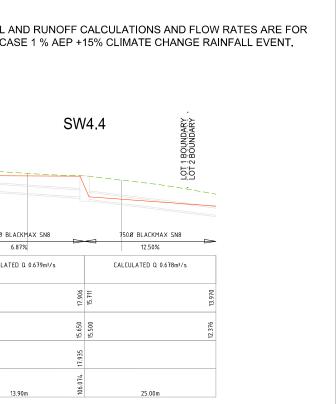
INVERT LEVEL

COVER

CHAINAGE


FINAL SURFACE LEVEL

NOTES 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CONSULTING ENGINEERS. 2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BOUNDARIES ARE SUBJECT TO CHANGE - REFER TO SURVEYOR'S PLANS FOR ACCURATE BOUNDARY LOCATIONS. 4. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN, REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. 5. YOU PUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	CLIENT:	CLIENT: ANNE	ECY GROUP PTY LTD		No. AMENDMENT DESCRIPTION A CHANGES TO ADDRESS PLANNING RFI	09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
		0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET INHIS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS WRITTEN CONSENT GNEW	Integral Consulting Engineers Civil ∞ Structural ∞ Project Management ™ 041788478 ************************************	APPROVED: Storbun Cole, Proceed Topper B Forg (Inc. 4 Scivenmental) VST Accreditation: Engineer Civil CC5900 T			STORMWATER PIPES 1, 2 & 3 HGL LONGSE SCALE 1:200 DRAWN E.LEGG DATE FEB 2024	DRAWING NO. 23201- H03	REVISION


ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

NOTES 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CONSULTING ENGINEERS. 2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BOUNDARES ARE SUBJECT TO CHANGE - REFER TO SURVEYOR'S PLANS FOR ACCURATE BOUNDARY LOCATIONS. 4. TAS NETWOR'S AND TESTIAS SERVICES ARE NOT SHOWN REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. 5. YOU MUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.		ECY GROUP PTY LTD		No. AMENDMENT DESCRIPTION A CHANGES TO ADDRESS PLANNING RFI	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL STORMWATER PIPE 4 HGL LONGSECTION		
	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS WRITTEN CONSENT GAVEN	Integral Consulting Engineers Civil @ Structural @ Project Management rr. 04156014 @ aard@shrapleoptenc.com.au w: www.elingadengineers.com.au w: Unit 10, 11 Monison St, Helaut, 7000	APPROVED: Stephen Cale, Pencyal Topper B Egn (Chi & Environmental, CPEng WST Accordution: Engineer Civil CC5900 T		SCALE 1:200 DRAWN ELEGG DATE FEB 2024	DRAWING NO. 23201- H04	REVISION

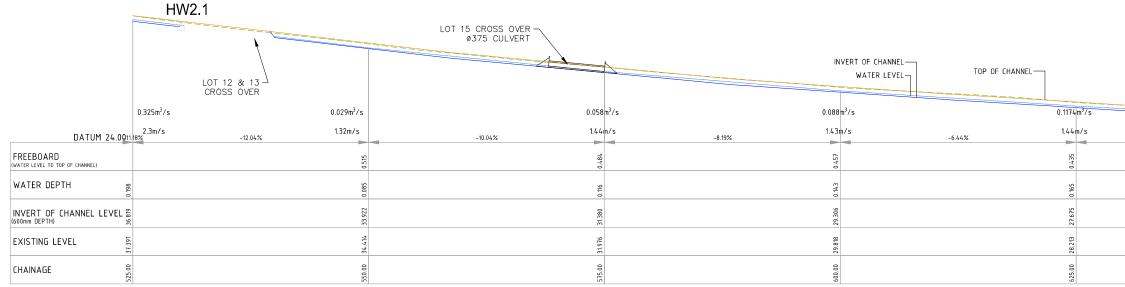
STORMWATER PIPE 2 LONGSECTION

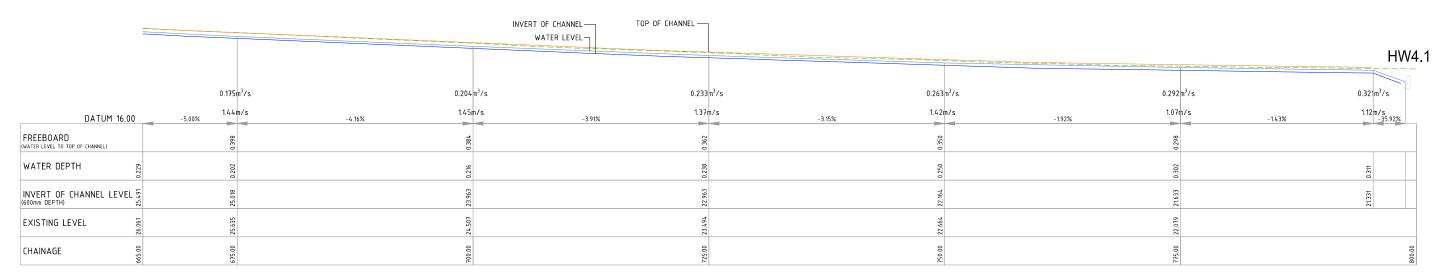
					ALL RAINFALL A THE WORST CA
_	PROPOSED HW4.1 ^{ROAD} SW4.	Lot 1 Boundary	Finished Su	RFACE —	SW4.3
PIPE DETAILS DATUM 10.00	600Ø RCP CLASS 2	۹	750Ø BLACKMAX SN8 4.12%		750Ø BLA 6.
PIPE FLOW	CALCULATED Q 0.325m³/s		CALCULATED Q 0.683m³/s		CALCULATE
HGL LEVEL - 1% AEP + CC EVENT	21.090	20.0 f2			11.958
INVERT LEVEL	19.960	19.789			16.655
FINISHED SURFACE LEVEL	21.135 21.503				18.703
CHAINAGE	80 6 ft 12.15m 92		76.08m		22 J20

		INVERT OF CHANN 1% AEP WATER LEV		CHANNEL TO BE Direct flow in	E SHAPED TO NTO CULVERT	ERT
DATUM 19.00	0.074n -7.66%		0.221m³/ _7.12%		-13.22% -32.38% 24.07% -0.21%	-0.63%
FREEBOARD IWATER LEVEL TO TOP OF CHANNEL)	0,466	0.4.26	66E.0	0.231	0.179	
WATER DEPTH SL230	7 EL 0	41.0	0.201	69E.0	0.115 0.370 0.4.61 0.4.21	0.470
INVERT OF CHANNEL LEVEL	29,616	27.919	26.111	24.409	23.164 21.706 22.322 22.322 22.347	22.235
EXISTING LEVEL 13722	.05 30.790	28.39 2	26.703	24.960	22.661	22.651
CHAINAGE 8	25.00	0005	75.00	100.00	125.00	135.00

						INVERT OF CHANNEL	TOP OF CHANNEL				
-		0.884m ³ /s		0.737m³/s		0.663m ³ /s		0.589m³/s		0.516m³∕s	
DATUM 20.00	-0.63%	1.55m/s	1.87%	2.7m/s	7.78%	2.48m/s	7.43%	2.39m/s	9.64%	2.69m/s	11.52%
FREEBOARD (WATER LEVEL TO TOP OF CHANNEL)		0.164		0.298		0.301		0.314		£4E.0	
WATER DEPTH		0.436	0.308	0°.02		0.299		0.286		0.253	0.341
INVERT OF CHANNEL LEVEL		22.175	22.490	23.626		25.574		27.445		29.888	31.527
EXISTING LEVEL		22.541		24.210		26.477		28.277		30.620	32.442
CHAINAGE		150.00		15.00		200.00		225.00		250.00	265.00

			TOP OF CHAN INVERT OF CHANNEL EXISTING SURF 1% AEP WATER LEVEL		
Ē	0.44 2m³/s	0.368m ³ /s	0.295m ³ /s	0.22′m³/s	0.14 (m ³ /s
DATUM 29.00	2.61m/s	2.48m/s 12.49% 11.00%	2.04m/s	7.56% 1.45m/s 6.10%	1.29m/s 3.04%
FREEBOARD	0	1150	0	0344	50770
WATER DEPTH	8E2.0	0223	0.220	0 226	0.195
INVERT OF CHANNEL LEVEL	32.782	35.920	38.672	40.556	42.112
EXISTING LEVEL	33.751	36946	39.676	41541	42.94.1
CHAINAGE 00.0000000000000000000000000000000000	275.00	300.00	325.00	350.00	375.00


ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.


NOTES 1. © THIS BRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CONSULTING ENGINEERS. 2. THE LAYOUT OF FOADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BOUNDAMERS ARE SUBJECT TO CHANGE HERET TO SURVEYORS FLANS FOR ACCURATE BOUNDARY LOCATIONS. 4. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN, REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. 5. YOU MUST CONTACT DUAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	CLIENT: ANNECY	' GROUP PTY LTD		MENDMENT DESCRIPTION ADDRESS PLANNING RFI 09
		Integral Consulting Engineers Civil © Structural © Project Management m: 0417 850 474	APPROVED:	
1995	ALL RIGHTS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS WRITTEN CONSENT GMEN	team@intgratenginters.com.au wvw.intggratengineers.com.au unit 10, 11 Morrison St, Hobart, 7000	Stephen Cole, Principal Engineer B Eng (Civil & Environmental), CPEng WST Accreditation: Engineer Civil CC5900 T	

NOT FOR CONSTRUCTION

DATE	15 LOT SUBDIVSION								
9/04/2024	9 VALLEYFIELD RD, SORELL								
	ROAD DRAINAGE HIGH SIDE SWALE HGL LONGSECTION CH0.00 - 395								
	SCALE 1:200		DRAWING No.	REVISION					
	DRAWN E.LEGG		23201-H05	(Δ)					
	DATE FEB 2024		20201 1100	$\underline{\mathbf{n}}$					

					TOP OF CHANNEL			
	LOT9 CROSS O ø375 CULVE	/ER - .RT		LOT 10, 11 & 14 CROSS OVER ø375 CULVERT		WATER LEVEL		
	0.074m³∕s		0.054m³/s	0.10Bn	n ³ /s	0.16Bm³/s	0.217m ³ /s	0.27 lm ³ /s
DATUM 32.00	3.04%	2.47%	1.05m/s 0.20%	-3.81%	-4.72%	1.57m/s _7.19%	2.09m/s -8.83%	-11.18% 2.38m/s -12.04%
FREEBOARD (WATER LEVEL TO TOP OF (HANNEL)	5445		694.0	0.432		0.432	0.414	0402
WATER DEPTH	0.155		0.000	0.168		0.168	0.109	0.198 E11.0
INVERT OF CHANNEL LEVEL (600mm DEPTH)	42.912		43.554 43.696	42.187		41606	39.626	36.24.2 36.24.2
EXISTING LEVEL	006:34		625.44	43.599		42.247	40.072	16.7.3E
CHAINAGE 00	400.00		425.00	450.00		475.00	200.00	525.00 539.00

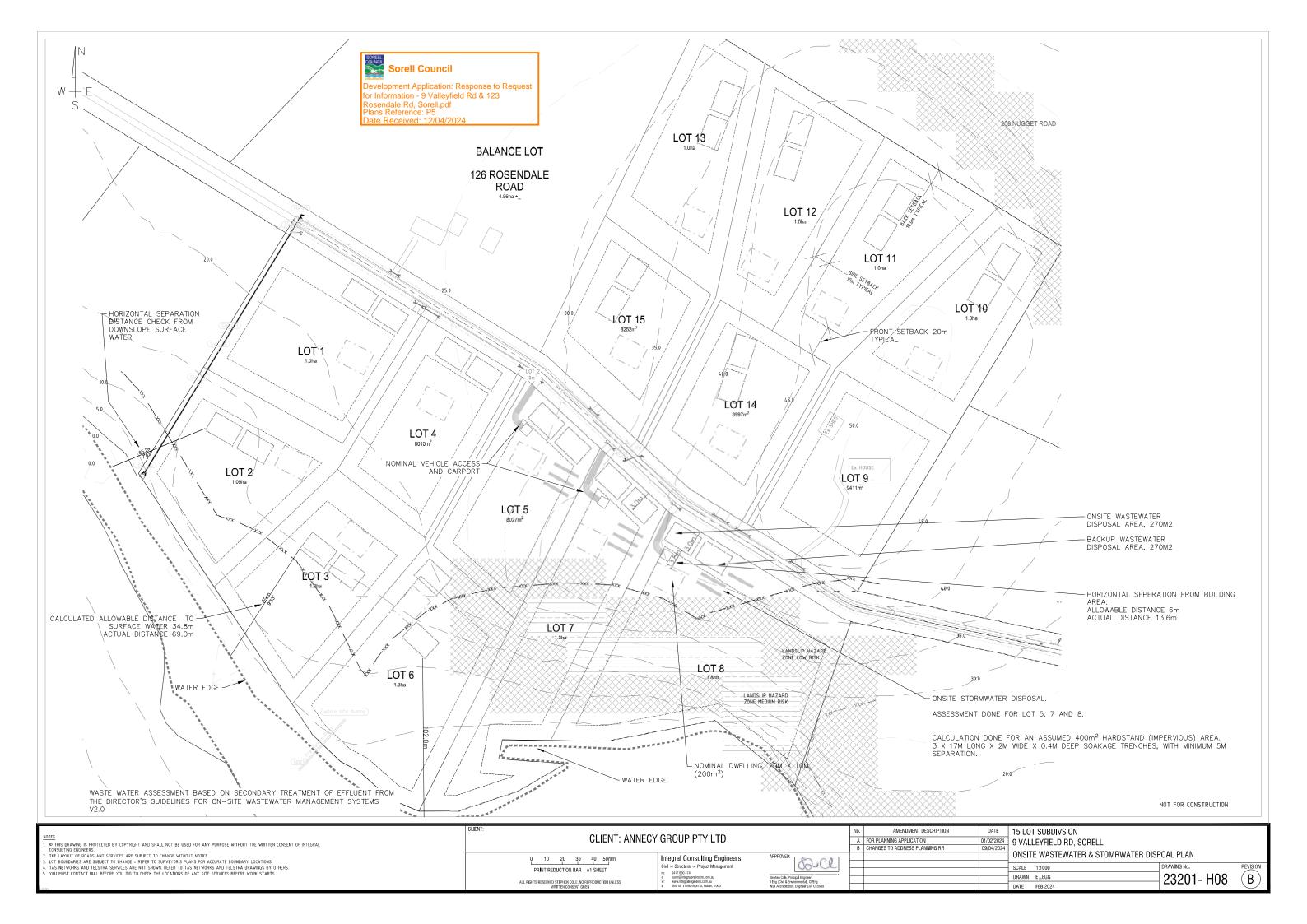
ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

NOTES 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CONSULTING ENGINEERS.	CLIENT: A	NNECY GROUP PTY LTD		No. AMENDMENT DESCRIPTION A CHANGES TO ADDRESS PLANNING RFI	SVALLETTILLETTIC, SOTILLE
 THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. LOT BOUNDARES ARE SUBJECT TO CHANGE – DEFERT OS UNEVERVORS PLANS FOR ACCURATE BOUNDARY LOCATIONS. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. YOU HUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS. 	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVED STEPHER OLE. NO REPROJUCTION UNLESS WRITTEN CONSENT GIVEN	Integral Consulting Engineers Civil & Structural & Project Management Tr. 0417 563 42 Were application of the Civilian Application Were were application of the Civilian Application Were application of the Civilian Application Were application of the Civilian Application of the Civilian Application Were application of the Civilian Application of the Civilian Application Were application of the Civilian Application of the Civilian Application Were application of the Civilian Application of the	APPROVED: Silvahe Cele, Precipit Engineer Be Big (Child & Environmental), CPErg WST Accreditation: Engineer CMI CCS500 T		ROAD DRAINAGE HIGH SIDE SWALE HGL LONGSECTION CH390- 797 SCALE 1:200 DRAWN E.LEGG DRAWN E.LEGG DATE FEB 2024 23201-H06

	0.149	m ³ /s	
-5.48%	1.51r	n/s5.00%	
	0.420		
	0.180		0.229
	26.289		25.491
	26.833		26.061
	650.00		665.00

NOT FOR CONSTRUCTION

SW2.2	Ø375	LOT 7 ROSS OVER 5 CULVERT	TOP OF CHANNEL EXISTING SURFACE WATER I				
	-7.14%	0.325m ³ /s -10.13%	0.329m ³ /s -8.22%	0.332m³/s -6.62%	0.336m ³ /s _5.42%	0.339m ³ /s4.95%	-4.20%
DATUM 16.00		2.38m/s	2.22m/s	2m/s	1.8m/s	1.88m/s	
FREEBOARD (water level to top of channel)	66E (1916		1213	1214	
WATER DEPTH	1,225		1226		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.256
INVERT OF CHANNEL LEVEL			11.229	2 49 49 15	13500	6.141 C	7 768.77
EXISTING LEVEL	3 7 7 7		E 098921	7 967.6	7.764 2	6.346	5.138 2
CHAINAGE	550.00		212100	Z 000000	625.00 2	650.00 2 i	675.00 21


											HW3.1
									- 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 2027 - 202		3750 RCP
		0.343m³∕s		0.346m ³ /s		0.350m ³ /s		0.353m³/s		0.357m ³ /s	0.360m ³ /s
DATUM 16.0	0	1.74m/s	-4.20%	1.68m/s	-3.85%	1.52m/s	-3.20%	1.52m/s	-1.78%	1.14m/s	-1.44% 1.13m/25.57%
FREEBOARD (WATER LEVEL TO TOP OF CHANNEL)		0.206		0.200		0.185		0.187		0.104	
WATER DEPTH	0.284	0.256		0.262		£72.0		0.276		0.323	0.324
INVERT OF CHANNEL LEVEL	25.609	24.894		23.838		22.861		22.061		21.568	21.339
EXISTING LEVEL	25.852	25.138		24.115		23.112		22.363		21.825	21.614
CHAINAGE	660.00	675.00		200.00		725.00		750.00		775.00	792.00

ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

NOTES 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL	CLIENT: CLIENT: ANNEC	Y GROUP PTY LTD		No.	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	09/
CONSULTING ENGINEERS. 2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BONDRAMES ARE SUBJECT TO CHANGE - REFER TO SURVEYOR'S PLANS FOR ACCURATE BOUNDARY LOCATIONS.	0 10 20 30 40 50mm	Integral Consulting Engineers	APPROVED:			
4. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWN. REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS. 5. YOU MUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS	Civil © Structural © Project Management m: 0417 650 474 e: team@integratenginetrs.com.au w: www.integratengineers.com.au	Stephen Cole, Principal Engineer B Eng (Chill & Environmental), CPEng			
1923	WRITTEN CONSENT GIVEN	a: Unit 10, 11 Morrison St, Hobart, 7000	WST Accreditation: Engineer Civil CC5900 T			

NOT FOR CONSTRUCTION

DATE /04/2024		t Subdivsion Leyfield RD, sorell		
	ROAD	DRAINAGE LOW SIDE SWALE HGL LON	GSECTION CH550-801	
	SCALE	1:200	DRAWING No.	REVISION
	DRAWN	E.LEGG	23201-H07	(Δ)
	DATE	FEB 2024		$\underline{\mathbf{W}}$

		#Line	* URBAP					#Line				#Line	Area 5 Post				#Line	² UKBAP				#Line			#Line	Area 3 Post				#Line	*URBAN				#Line			#Line
0 N025		Struct. ID	V DRAINA	L WIIOCO	1 whole site	0 N025		Struct. ID	TLAL	1		Pipe	Post	1 whole site	0 N025		Struct. ID			0 N025		Struct. ID	1 P013		Pipe	Post	1 whole site			Struct.	V DRAINA	1 whole site	0 N025		Struct. ID	1 P013	2	нре
	(m)	. ID Exit Ho	GE DESIG		site		(m)	DD	CZONI			From		esite		(m)	. ID Exit Ho	GE DESIG	SILE	5	(m)	DD	N025		From		esite		(m)	. ID Exit Ho	GE DESIG	site		(m)	DD	020N		FIOII
	(m)	н Н	N MANU	0.0	8 0		(c	Q				5		0		(m)	Ho Hf		0.0	0	(c	Q			To		0	,	(m)	нť	N MANU	0.8		(c	Q			-
			AL - Hydra	0.010	0 946		(cu. m/se (m)		WIDESIE			ω		0				AL - Hydra	1.400	1 100	(cu. m/se (m)		whole site		· 60		1.294	2			AL - Hydra	2.815		(cu. m/se (Whole Site		
	(m)	Нb	aulic Eng	10.100	43 139		m)		40.100	(111)	m)	D Length		0		(m)	н	auuc Eng	40.109	100	m)	-	43.139	(m)	D Length		0	5	(m)	Hb	aulic Eng	43.139		(m)		43.139	(m)	D LEIISUI
	(m)	н	neering C	4.00	4 339		(m/s)	<	006T /	(34.111) 7100	(cn m)	Drainage				(m)	Нc	neering C	4.043	4 0 4	(m/s)	<	91087	(sq. m)	Drainage				(m)	нc	neering C	5.6		(m/s)	<	2/1596	(sq. m)	Diamage
	(m)	He	*UKBAN DRAINAGE DESIGN MANUAL - Hydraulic engineering Circular No.22 Third Edition	0.00	0.358		(m)	d	0 / LOO	hc)	(cn m)	Drainag		0		(m)	He	- ORBAN DRAINAGE DESIGN MANDAL - Hydrautic engineering circutar No.22 Inito Edition	0.409		(m)	đ	7 91087	bs)	Drainag		0		(m)	He	*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition			(m)	đ	5 271596	(s	op religiti pratitage, pratitage, nution where A C Alea A C Tittle of W tittle of W natit 1
	(m)	Ŧ).22 I hird		18 N 593		(m)	dc				e , Runoff		0		(m)	I).22 I NIFO			(m)	dc			e , Runoff		0	>	(m)	ī).22 Third	0.8 n/a		(m)	dc			
	(m)	Total	Edition				(m)	v^2/2g	0.7 00004.2		(on m	3D Length Drainage , Drainage , Runoff Cor Area X "C" Area X "C" Time of Cc Time of Cc Rain "I"		0		(m)	Total	Edition	U. / Z I.		(m)	v^2/2g	0.7 63760.9	6	3D Length Drainage / Drainage / Runoff Co/ Area X "C" Area X "C" Time of Cc Time of Cc Rain "!"		0		(m)	Total	Edition			(m)	v^2/2g	0.65 1/653/.4		
	(m)	m			0.06 17		(m)	EGLo		-	1000	"C" Area		0		(m)			T GGT'T		(m)	EGLo			"C" Area		1.294	8	(m)	Ξ.		1.6		(m)	EGLo	5/.4 1/653/.4		C Mica
	(m)	у+(F				0	(m)	HGLo	JUJU4.2		n) (min	X "C" Time		1.669		(m)	y+(F		T 600./T		(m)	HGLo	63760.9	(m	X"C" Time		2.4		(m)	у+(F		18.4	0	(m)	HGLo	3/.4	n) (min)	0
		y+(P/gam DI		0.000	16.358	5		.o Sf	23.2		(m)	eofCcTin		0.469			y+(P/gam DI		10.409	0		.o Sf	17.22	i) (min)	e of Cc Tin		0.801	2		y+(P/gam DI		16.8	0		.o Sf	30.6	S I	
	-	m			5		-	-	20.2	(1111)	n)	ne of Cc R		1.056		-	п		~	.	-		17.22		ne of Cc R		N	,	-	m		0.03		-		30.6	(min) (r	
	(m)	Eai			5		(m)	Total Pipe EGLi	07.00	(111/111)	am/hr/ /			1.327		(m)	Eai		-	5	(m)	Total Pipe EGLi	83.913	nm/hr) (ain "I" F		3.199	200	(m)	Ea:		1.294		(m)	Total Pipe EGLi	57.401	nm/hr) (-
		ß		10.012	18 612		(m)	EGLi	0.940			lunoff"O'		0			ß		10.902	10 000	(m)	EGLI	1.486	cu. m/sec	lunoff"Q		0	,		ß		19.694		(m)	egli	2.815	cu. m/sec	
		C-theta		11.002	17 650		(m)	HGLi		(cu. 11/ se		Runoff "O' Known O Total O		0			C-theta		11.100	17 700	(m)	HGLi	0	(cu. m/se	Runoff"Q" Known Q Total Q		0			C-theta		18.094		(m)	HGLi	0	(cu. m/se	NIIOWII Q
		ß			1 318		(m)	Ea	0.040	(cu.	lou m/c	Total O					ß		COD T		(m)	Ea	1.486	(cu.	TotalQ					£		3.199		(m)	Ea	2.815	(cu.	Indiary
	(m)	На			8 18 612		(m)	EGLa			er (m)	Pipe Dia		0		(m)	Ha		706.0T		(m)	EGLa			Pipe Di		0	>	(m)	На				(m)	EGLa		-	
	(m)	Еа		4		18.094	(m)	U/STO	0.0	(cu. III)	()	e Dia. Full O Velocity FiVelocity D Sec Time Invert Elev Invert Elev Crown Drc Slope		0 1.669		(m)	Ea		- 70	18.094	(m)	U/STO	0.8 2.2		e Dia. Full Q		0 3.199		(m)	Б		20.493	18.094	(m)	U/STO	0.8 2.293	(cu. m/	כשום. דעווע
				10.		ſ	(m)	C Surfa			en Im Iel	Veloci		ő					10.		Ê	C Surfa	<u>193</u> 4.	(cu. m/set (m/s)	Veloci		99	3				18.		(m)	C Surfa	4.561	ser (m/s)	
					18 269 N/A	16.975		U/STOC Surface E Step4*	4.001 4.009	(cu. III/set (III/s) (IIII/s) (IIIII) (III)	/m/e/	ty Fiveloc							A/NI 607'0T	16.975		U/STOC Surface E Step4*	2 293 4.561 4.849 0.148 17.294	(m/s)	ty Fi Veloc							18.269 N/A	16.975		U/STOC Surface E Step4*		(m/s)	LY FIVELUC
				000	Case A			1* Step7*		2000		ity D Sec T							Case A	2		1* Step7*	.849	(min)	ity D Sec T							Case A			I* Step7*	5.6	min	
					A N/A			7* Step14*	0.100 17.234	100 (111)	(m)	ïme Inve							A IN AS				0.148) (m)	ïme Inve							A Case A				0.128 17.294) (m)	
					-			014*	17.234	17 004	/m	rt Elev Inv										Step 14*	17.294	(m)	rt Elev Inv							3e A			Step14*	17.294	(cu. m/se((m/s) (m/s) (min) (m) (m)	velocity Fivelocity of sectime inventicevitivencelevicity of own on cooperatives
									V/N OT			ert Elev Q											16 N/A		rt Elev											16 N/A		
									ź			own Drd S											/A	. <u>n</u>	own Drc S											IA	: "	
									0.0070	200	a d a c	lope											3.00%		Slope											3.00%		adore

Appendix 2: Detailed Stormwater Calculations

			#Line		*URBAN				#Line			#Line	SW line 2				#Line	*URBAN				#Line			#Line	SW line 1
1 HW2.1	0 HW2.2		Struct. ID		*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition	1 HW2.1	0 HW2.2		Struct. ID	1 PIPE 2.1		Pipe	2	1 HW1.1	0 HW1.2		Struct. ID	*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition	1 HW1.1	0 HW1.2		Struct. ID	1 PIPE 1.1		Pipe	
		(m)	D Exit Ho		DESIGN M	0.375		(m)	D	HW2.1		From				(m)	D Exit Ho	DESIGN M	0.75		(m)	D	HW1.1		From	
0		(m)	千		1ANUAL - H			(cu. m	Ø	HW2.2		То		0		(m)	莱	1ANUAL - H			(cu. m	Ø	HW1.2		То	
0		(m)	Ηb	-	Hydraulic	0.321 10.		(cu. m/se (m)	-		(m)	3D Ler		0		(m)	Нb	Hydraulic	1.105 12.		(cu. m/se (m)	-		(m)	3D Ler	
0		(m)	Нc		Engineerir	10.605 5		(m/s)	<	10.605 19129.17 19129.17	(sq. m)	3D Length Drainage , Drainage , Runoff Cor Area X "C" Area X "C" Time of Cc Time of Cc Rain "I"		0		(m)	Нс	Engineerir	12.789 6		(m/s)	<	12.789 64784.46 64784.46	(sq. m)	3D Length Drainage , Drainage , Runoff Cor Area X "C" Area X "C" Time of Cc Time of Cc Rain "I"	
0		(m)	He		ng Circula	5.658) (m)	۵	9.17 191	1) (sq. m)	age , Drair		0		(m)	He	ıg Circula	6.845 () (m)	٩	4.46 6478	1) (sq. m)	age , Drair	
0		(m)	Ĩ.		r No.22 Th	0.191		(m)	dc	29.17	m)	nage , Run		0		(m)	J.	r No.22 Th	0.295		(m)	dc	84.46	m)	nage , Run	
0) (m)	То		nird Editio	0.364) (m)	۷^	0.7 13	(sc	off Cot Are		0) (m)	To	nird Editio	0.643) (m)	۷^	0.7 4	(sc	off Cot Are	
0			Total E		-	1.633			v^2/2g E	0.7 13390.42 13390.42	(sq. m) (s	ea X "C" Ai		0			Total E	3	2.39			v^2/2g E	0.7 45349.12 45349.12	(sq. m) (sq. m)	ea X "C" Ai	
1.824		(m)				36.305	0	(m)	EGLo	13390.42	(sq. m) ('ea X "C" T		2.685		(m)			23.406	0	(m)	EGLo	15349.12		'ea X "C" T	
0.191		(m)	y+(P/gam DI			34.672	0	(m)	HGLo	16.068	(min)	ime of Cc		0.295		(m)	y+(P/gam		21.017	0	(m)	HGLo	15.36	(min)	ime of Cc	
1.515			₽			0			Sť	16.068	(min)	Time of Q		0.922			₽		0			Sť	15.36	(min)	Time of Q	
0.861		(m)	Eai			0		(m)	Total Pipe EGLi	86.264	(mm/hr)	Rain "I"		1.137		(m)	Eai		0		(m)	Total Pipe EGLi	87.708	(mm/hr) (cu. m/set (cu. m/set (cu. m/set (m)	Rain "I"	
			8			37.618		(m)	€ EGLi	1 0.321	(cu. m/set (cu. m/set (cu. m/set (m)	Runoff "C					8) 24.58		(m)	EGLi	1.105	(cu. m/s	Runoff "O	
0			C-theta			8 35.985		(m)	HGLi	4	er (cu. m/s	ע Known		0			C-theta		8 22.19		(m)	HGLi	J	er (cu. m/s	2' Known (
0 0.171			ß			35 1.824		(m)	5	0 0.321	sei (cu. m/	Runoff "Q' Known Q Total Q		0 0.051			ß		19 2.685		(m)	E	0 1.105	sei (cu. m/	Runoff "Q' Known Q Total Q	
71		(m)	На					(m)	EGLa	0.375	ser (m)			51		(m)	뀸				(m)	EGLa		ser (m)		
0		(m)	Ea	_		37.618	34	(m)	U/ST		(cu. n	Pipe Dia. Full Q		0		(m)	Ea		24.58	21	(m)	U/STOC	0.75 3	(cu. n	Pipe Dia. Full Q	
1.824						ω	34.855 3	(m)	OC Surf	0.62	(cu. m/set (m/s)			2.685						21.472 2	(m)		3.382	(cu. m/set (m/s)		
						36.719 N/A	35.405		U/STOC Surface E Step4*	5.613) (m/s)	city Fi Velo							23.07 N/A	21.897		Surface E Step4*	7.656) (m/s)	city Fi Velo	
										61 80		city D Sec		_									6.845	s) (mi	city D Sec	
						Case A N.			Step7* St	0.031	n) (m)	Time Inv							Case A N.			Step7* St	0.031	(min) (m)	Time In	
						N/A			Step14*	0.031 35.794	1) (1	vert Elev Ir.							N/A			Step14*	21.895		vert Elev Ir.	
										34.48 N/A		Velocity Fi Velocity D Sec Time Invert Elev Invert Elev Crown Drc Slope											20.722 N/A	(m) (Velocity Fi Velocity D Sec Time Invert Elev Invert Elev Crown Drc Slope	
										V/A	(m)	Crown Drc											V/A	(m)	Crown Drc	
										12.48%		Slope											9.21%		Slope	

								#Line	*URBAN									#Line								#Line	
6 HW2 1	5 HW4.1	4 SW4.2	3 SW 4.3	2 SW 4.4	1 SW 4.5	0 HW 4.6		Struct. ID	*URBAN DRAINAGE DESIGN MANUAL - Hydraulic Engineering Circular No.22 Third Edition	6 HW3.1	5 HW4.1	4 SW4.2	3 SW 4.3	2 SW 4.4	1 SW 4.5	0 HW 4.6		Struct. ID	6 PIPE 3.1	5 PIPE 4.1	4 PIPE 4.2	3 PIPE 4.3	2 PIPE 4.4	1 PIPE 4.5		Pipe	1
0 217	0.027	0.049	0.048	0.048	0		(m)	D Exit Ho	DESIGN M/	0.375	0.6	0.75	0.75	0.75	0.75		(m)	D	HW3.1	HW4.1	SW4.2	SW 4.3	SW 4.4	SW 4.5		From	
0	7 0.034	0	3 0.052	0	0		(m)	千	ANUAL - Hy	5 0.36	o 0.325	5 0.683	5 0.679	5 0.678	5 0.677		(cu. m/se (m)	Ø	SW4.2	SW4.2	SW 4.3	SW 4.4	SW 4.5	HW 4.6		То	
0	4 0	0	2 0	0			(m)	윤	draulic Eng	6.172	5 12.153	3 76.149	9 13.937	3 25.194	7 66.715		e (m)	-	6.172	12.153	76.149	13.937	25.194	66.715	(m)	3D Length	
0	0	0	0	0	0		(m)	Нс	ineering Cir	5.627	1.15	4.481	1.537	6.667	6.48		(m/s)	<	19174	12.153 19333.39	0	0	0	0	(sq. m)	Drainage /	
D	0	0	0	0	0		(m)	He	cular No.2:	0.211	0.6 n/a	0.283	0.75 n/a	0.211	0.215		(m)	đ	19174	19333.39	38507.39	38507.39	38507.39	38507.39	(sq. m)	Drainage /	
D	0	0	0	0	0		(m) (Ţ.	2 Third Editi	0.368	n/a	0.513	n/a	0.51	0.51		(m) (dc v	0.7	0.7	0	0	0	0	(;	Runoff Cot A	
D	0.034	0	0.052	0	0		(m) (r	Total Ei	ion	1.615	0.067	1.024	0.12	2.267	2.142		(m) (r	v^2/2g E	15089.94 1	0.7 13533.37 1	0	0	0	0	(sq. m) (s	3D Length Drainage / Drainage / Runoff Cor Area X "C" Area X "C" Time of C Time of C Rain "I"	
1 826	1.197	1.307	1.473	2.478	2.356		(m) (n			21.313	21.123	18.151	18.026	14.09	6.387	0	(m) (n	EGL0 H	15089.94	13533.37	28623.31	28623.31	28623.31	28623.31	(sq. m) (n	rea X "C" Ti	
0 211	1.13	0.283	1.353	0.211	0.215		(m)	y+(P/gam DI		20.77	21.056	18.029	17.906	13.97	4.245	0	(m)	HGL0 Sf	16.2	15.96	0	0	0	0	(min) (m	me of C Tir	
1 700	0.474	0.571	0.567	0.566	0.565		(m)	Eai		0.042	0.003	0.004	0.004	0.004	0		(m)		16.2	15.96	16.218	16.502	16.545	16.608	(min) (m	ne of Cc Ra	
1 087	1.21	0.824	1.497	0.82	0.819		=	CB 		0	0.034	0	0.052	0	0		1) (m)	Total Pipe EGLi	85.994	86.484	85.957	85.379	85.291	85.162	m/hr) (cu		
D	0	0	0	0	0					22.934	21.157	21.096	18.078	17.978	14.042) (m)	Li HGLi	0.36	0.325	0.683	0.679	0.678	0.677	(mm/hr) (cu. m/set (cu. m/set	Runoff "Q' Known Q	
D	0	1.272	0.001	0.002	0			C-theta Cp		21.319	21.09	20.072	17.958	15.711	11.901) (m)	Ea	0	0	0	0	0	0	-	own Q Total Q	
0	0	0	0	0	0		(m)	На		1.826 2	1.21 2	1.307 2	1.497 1	2.478 1	2.356 1		(m)	EGLa	0.36	0.325	0.683	0.679	0.678	0.677	cu. m/set (m)		
0	0	0	0	0	0		(m)	Ea		22.934	21.171	21.096 20	18.102 17	17.978	14.042 13		(m)	a U/STOC	0.375 0	0.6 0	0.75 2	0.75 2	0.75	0.75 3	(cu. r	Pipe Dia. Full Q	
1.826	1.21	1.307	1.497	2.478	2.356					22	21	20.439 21	17.405 18	16.4 17	13.126 13	4.78 4	(m)		0.593 5	0.615 2	2.262 5	2.921 6	3.94 8	3.788 8.	(cu. m/set (m/s)		
										22.033 Case B	21.135 Case B	21.503 Case B	18.703 Case B	17.935 Case B	13.876 N/A	4.955		Surface E Step4*	5.372 5.0	2.174 2.1	5.119 4.	6.611 5.3	8.917 6.0	8.573 6	(m/s)	ity Fı Veloci	
										B N/A	Case A			* Step7*	5.627 0.0	2.203 0.0	4.481 0.2	5.381 0.0	6.667 0.0	6.48 0.1	(min)	ty D Sec Tin					
										Case D	Case A	Case D	Case A	Case D	A N/A			Step14*	0.018 21.108	0.092 19.96	0.283 19.789	0.043 16.605	0.063 15.5	0.172 11.686	(m)	1e Invert El	
																		*							(m)	lev Invert El	
																			20.407 N/A	19.839 N/A	16.655 N/A	15.65 N/A	12.376 N/A	4.03 N/A	(m)	Velocity Fi Velocity D Sec Time Invert Elev Invert Elev Grown Drc Slope	
																			11.43%	1.00%	4.12%	6.87%	12.50%	11.55%		c Slope	

Appendix 3: Stormwater Onsite Soakage System Assessment

p: 6220 1336

e: team@integralengineers.com.au w: www.integralengineers.com.au a: Unit 10, 11 Morrison St, Hobart 7000 ABN: 23 627 152 041

INTEGRAL CONSULTING ENGINEERS

Date	22/03/2024
Job No.	23201
Page	1 of 1

50.000 m long

2.000 m wide

0.400 m deep

PROJECT: 9 Valleyfield Rd, Sorell Subdivision	SUB.	IECT: Stormwater Onsite Soakage System - Individual Lot
ARI:	20 years	
Catchment:	400 m2	
Run-off Co-eff:	0.9	
Soakage Area Dimensions:	50 m long	
	2 m wide	
	0.4 m deep	
Soakage trench volume:	40 m3	
Arch volume	2,455	
Useable storage volume:	17.47 m3	40% void space in aggregate plus volume in arch
% of side wall height for soakage area	50%	
Soakage area	110 m2	
ksat	0.25 m/day	
ksat	0.00017 m/min	
	0.01910 m3/min	
	27.5 m3/day	

Duration	Duration (Min)	Rainfall Intensity (mm/h)	Rainfall Depth (mm)	Run-off Volume (m3)	Soakage out of trench over storm event (m3)	Required storage (m3)	Available storage (m3)
5 min	5	102	8.5	3.1	0.095	2.96	17.47
10 min	10	75	12.5	4.5	0.191	4.31	17.47
30 min	30	38.4	19.2	6.9	0.573	6.34	17.47
1hr	60	25.2	25.2	9,1	1.146	7.93	17.47
<u>6hr</u>	360	10.4	62.4	22.5	6.88	15.59	17.47
24hr	1440	4.86	116.6	42.0	27.50	14.49	17.47
72hr	4320	2.29	164.9	59.4	82.50	-23.14	17.47

Therefore, the required soakage trench size for absorption of stormwater run-off from up to 400m2 of roof and hardstand area for a lot in the subdivision for storm events up to the 5% AEP is:

The stormwater soakages trenches can be located entirely outsdie of the Landslide Hazard Area for each lot.

Stephen Cole B Eng (Civil & Environmental), CPEng WST Accreditation No. CC 5900 T

Appendix 4: Photos

Photo 1: Lot 8
Photo 2: Lot 10 / Lot 11.

	Photo 3: Lot 1 / Lot 2
	Photo 4: View of site including Landslip
and the second second second	Hazard Area from Arthur Highway
	Photo 5: View of site including Landslip Hazard Area and Iron Creek.

Annecy Group 21 Tamborine Close Mountain Creek, QLD 4557

27 November 2023

Ref: 23118 9 Valley Rd & 123 Rosdendale Rd - ANEF Assessment

Attention: Tom McClelland

9 VALLEYFIELD ROAD & 123 ROSDENDALE ROAD - ANEF ASSESSMENT

A multi-residential development is proposed at 9 Valleyfield Rd & 123 Rosdendale Rd, Sorell. The site is within an 'Airport Noise Exposure Area' under the 'Safeguarding of Airports Code' in the Tasmanian Planning Scheme. Therefore, the developer has requested a noise assessment to demonstrate that the proposal satisfies the Performance Criteria of clause C16.7.1 under the Scheme. NVC has been engaged to conduct such an assessment, the results of which are contained in this letter.

1. ASSESSMENT CRITERIA

The Tasmanian Planning Scheme contains requirements relevant to the development of subdivisions in an aircraft zone. Specifically, Clause C16.7.1, which is reproduced below:

C16.7.1 Subdivi	sion						
	aircraft noise; and		tably located to avoid exposure to excessive ive use does not compromise the operation of				
Acceptable Solut	ions	Perf	formance Criteria				
A1		P1					
 Each lot, or a lot proposed in a plan of subdivision, within an airport noise exposure area must be: (a) be for the creation of separate lots for existing buildings; 			Each lot, or a lot proposed in a plan of subdivision, within an airport noise exposure area must not create an opportunity for a sensitive use to be exposed to excessive aircraft noise, having regard to:				
(b) be required fo council or a S	r public use by the Crown, a tate authority;	(a)	the location, orientation and elevation of the site relative to aircraft flight paths;				
., .	for the provision of Utilities; (b) nsolidation of lots;	(b)	the current and future type and frequency of aircraft operating from the airport;				
building area	ation of a lot that contains a not less than 10m x 15m entirely le of the airport noise exposure	(c)	the type of use and the operational requirements for the use;				
area; or		(d)	the layout and construction of buildings associated with the use;				
(f) not be intende) not be intended for a sensitive use.		the need to not compromise the future operation of the airport;				
			the requirements of any relevant airport master plan; and				
		(g)	any advice from the airport operator or Airservices Australia.				

Sorell Council Development Application:Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plan Reference:P3 Date received:23/02/2024

2. BACKGROUND INFORMATION - RELEVANT STANDARDS

Intrusion and mitigation of aircraft noise in Australia is covered by AS 2021:2015¹, which stipulates building siting and construction requirements for adequate isolation for residential development from aircraft noise, depending on the predicted noise emissions from the airport and the building's separation distance from it.

AS 2021 first requires the determination of noise exposure of a building site, which defines the level of noise control required. The preferred method of determining this exposure is by reference to the Australian Noise Exposure Forecast (ANEF) system. AS2021 states the following regarding ANEF at Appendix A1:

"The NEF system is a scientifically based computational procedure for determining aircraft noise exposure levels around aerodromes. It can be used for assessing average community response to aircraft noise and for land use planning around aerodromes. In the Australian NEF system, noise exposure levels are calculated in Australian Noise Exposure Forecast (ANEF) units, which take into account the following features of aircraft noise:

- (a) The intensity, duration, tonal content and spectrum of audible frequencies of the noise of aircraft take offs, approaches to landing, and reverse thrust after landing (for practical reasons, noise generated on the aerodrome from aircraft taxiing and engine running during ground maintenance is not included).
- (b) The forecast frequency of aircraft types and movements on the various flight paths, including flight paths used for circuit training.
- (c) The average daily distribution of aircraft arrivals and departures in both daytime and night-time (daytime defined as 0700 hours to 1900 hours, and night-time defined as 1900 hours to 0700 hours).

ANEF charts are provided for most aerodromes throughout Australia. The charts are simply plans of the aerodrome and the surrounding localities on which noise exposure contours of 20, 25, 30, 35 and 40 ANEF units have been drawn. These contours indicate land areas around an aerodrome which are exposed to aircraft noise of certain levels as defined by Clause 1.5.6; the higher the ANEF value the greater the noise exposure.

In the areas outside 20 ANEF, noise from sources other than aircraft tends to predominate over aircraft noise..."

Regarding suitability for residential development, AS 2021 states:

"If the building site is outside the 20 ANEF contour, noise from sources other than aircraft may dominate; therefore, there is usually no need to proceed further in this Standard as the construction of the building need not specifically be designed to provide protection against aircraft noise intrusion."

¹ AS 2021:2015 Acoustics - Aircraft noise intrusion - Building siting and construction, Standards Australia.

Ref: 23118 9 Valleyfield Rd & 123 Rosdendale Rd - ANEF Assessment

3. HOBART AIRPORT ANEF CONTOURS

Hobart Airport has published ANEF contours, issued in 2022, which include the proposed changes under the 2022 Hobart Airport Master Plan². The report includes ANEF predictions up to the year 2042. The 2042 ANEF contours are shown in Figure 3.1, below. The location of the project site, 9 Valleyfield Road & 123 Rosdendale Road, is shown in red.

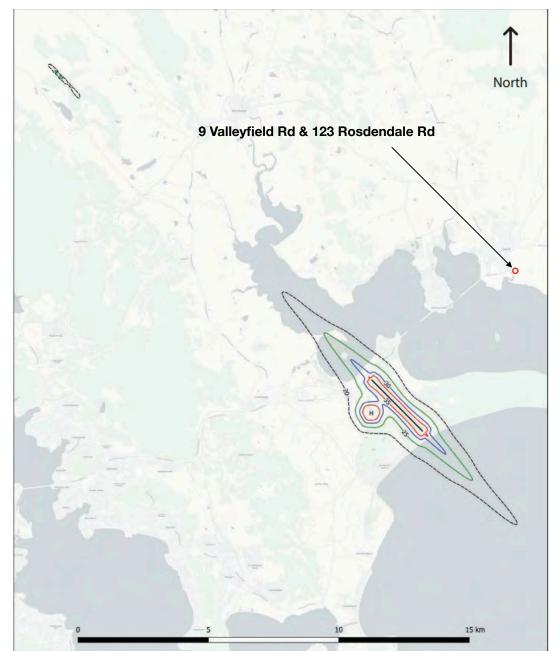


FIGURE 3.1: HOBART AIRPORT ANEF CONTOURS - YEAR 2042

It is noted that, due to higher than anticipated aircraft movements over Primrose Sands, Carlton and Carlton River, a Noise Abatement Procedure (NAP) trial has been proposed³. The modelled noise contours resulting from this proposed trial do not affect the Sorell area, and thus do not influence the aircraft noise levels expected to be experienced on the subject site.

² Hobart Airport Master Plan ANEF - Report, T070 Aviation Australia, 2022.

³ Hobart Airport Noise Abatement Procedure (NAP) trial proposal - Flight Path Design Assessment Outcome, Airservices Australia, 2023.

4. ASSESSMENT

Relevant each section of the Performance Criteria under clause C16.7.1-P1 of the Scheme, the following is noted:

- (a) The location of site is approximately 8.4 km from the ANEF 20 contour, and perpendicular to the flight path of the airport. This places the proposed site well outside of the flight path, and thus orientation and elevation will have minimal effect on the noise levels within the building.
- (b) The type of aircraft operating form the airport in the future are not expected to change markedly, and thus instantaneous noise levels are not expected to change. Long term noise levels may increase in the area in the future due to frequency of aircraft pass-by, but given the current and expected volumes of air traffic, the change is expected to be negligible. This is quantified in the ANEF contours for 2042 (see Figure 3.1).
- (c) The type of use is proposed residential subdivision but is a significant distance from ANEF 20 contour, approximately 8.4 km.
- (d) The layout of the buildings has a negligible effect regarding noise. The proposed construction is to utilise double glazing, and as the glazing is the weakest point, will reduce aircraft noise levels internally.
- (e) The proposal is not deemed to compromise the future operation of the airport regarding noise.
- (f) As noted from Figure 3.1, the proposed site is entirely outside the ANEF 20 contours, and thus the site does not require any specific building construction to protect from airport noise intrusion. The proposal is thus deemed to be in accordance with AS 2021:2015.
- (g) No requirements relevant to noise, due to the proposed residence being outside the ANEF 20 contour.

In summary, the proposal is deemed to comply with all requirements relevant to noise, specifically AS 2021:2015, and thus, residential amenity is unlikely to be compromised due to the operation of the airport.

The proposal is therefore deemed to comply with clause C16.7.1-P1 of the Tasmanian Planning Scheme.

Should you have any queries, please do not hesitate to contact me directly.

Kind regards,

Samuel Williamson

p: 6220 1336 e: <u>team@integralengineers.com.au</u> w: <u>www.integralengineers.com.au</u> a: Suite 21, 11 Morrison St, Hobart 7000 ABN: 23 627 152 041

ONSITE WASTEWATER ASSESSMENT

FOR A PROPOSED 15 LOT SUBDIVISION AT

9 VALLEYFIELD RD, SORELL & 123 ROSENDALE RD, SORELL

I.C.E. Project No: 23201

Client name: Tom McLelland

Document No. 23201-02 (Rev A)

01/02/2024

Document Approved by:

Stephen Cole BEng (Civil & Environmental) CPEng Principal Civil / Structural Engineer Integral Consulting Engineers Pty Ltd WST Accreditation: Engineer Civil CC5900 T

1. Introduction and Background Information

This report assesses the onsite wastewater disposal potential for each new lot for a proposed 15 lot subdivision, at 9 Velleyfield Rd, Sorell and 123 Rosendale Rd, Sorell.

Client: Tom McLelland

Past Land Use: Low intensity agricultural, rural residential

Underlying Geology: Mesozoic Basalt

Geological Map: MRT 1:250,000, Accessed via ListMap

Local Meteorology: Average annual rainfall approx. 495mm (source: BOM Hobart Airport station, 10km away from the site)

Local Services:

Water: no reticulated service.

Sewer: no reticulated service.

Stormwater: Lots 1-3, 6, 9, 14 and 15 will be able to drain run-off from hardstand areas to the street frontage, Iron Creek, or a Council stormwater main passing through the property. The remainder of the lots will need to dispose of run-off from impervious areas on site.

2. Planning Scheme Requirements

Planning Scheme zoning and associated requirements

The land is zoned "Rural Living Zone A" under the Tasmanian Planning Scheme State Planning Provisions. Section 11.5.3, A2 and P2, state the requirements for sewerage and wastewater in this zone.

A2	P2
Each lot, or a lot proposed in a plan of subdivision, excluding within Rural Living Zone C or Rural Living Zone D or for public open space, a riparian or littoral reserve or Utilities, must: (a) be connected to a reticulated sewerage	Each lot, or a lot proposed in a plan of subdivision, excluding within Rural Living Zone C or Rural Living Zone D or for public open space, a riparian or littoral reserve or Utilities, must be capable of accommodating an on-site wastewater treatment system adequate for the future use and
system; or	development of the land.
(b) be connected to a reticulated sewerage system if the frontage of each lot is within 30m of a reticulated sewerage system and can be connected by gravity feed.	
Page 2 of 10 Integral Consulting Engine	ers - 9 Vallevfield Rd, Sorell 23201-02 (Rev A)

There is no reticulated sewerage system within 30m of the subject properties. Therefore the Acceptable Solution A2 is not achievable, and the Performance Solution P2 is applicable.

The report addresses the performance solution 11.5.3 P2 for the proposed development.

Applicable Planning Overlays:

There are four planning scheme Code Overlays relevant to the site:

- Landslip Hazard Code (Low and Medium Landslip Hazard Bands)
- Natural Assets Code (Waterway and Coastal Protection Area)
- Bushfire Prone Areas Code
- Safeguarding of Airports Code (Airport Noise Exposure Area, Airport obstacle limitation area).

3. Field Investigation

Date of field Investigations: Wed 24 Jan (Evan Legg; Test holes augered), Thu 25 Jan (Stephen Cole).

Preceding Weather Conditions: Fine

Soil Profiles:

Six test holes were augered using a 75mm hand auger to get a representation of soil conditions at the site. Test hole locations are indicated in the Onsite Wastewater and Stormwater Disposal Plan (Appendix 1). Test Hole Results are presented in table 1 below.

Description	TH1	TH2	TH3	TH4	TH5	TH6
Sandy topsoil, dry and clayey	0 - 0.13	0-0.06	0-0.2	0 -0.18	0-0.23	0-0.17
Clay, dark brown, very stiff	0.13 – 0.54	0.06 – 0.32	0.2 – 0.48	0.18 – 0.54		0.17 – 0.82
Sandy clay, loose and crumbly	0.54 -	0.32 -	0.48 -	0.54 -		0.82
	0.6	0.46	0.6	0.6		
Refusal on assumed rock base	0.6	0.46	0.6	0.6	0.23	0.82

Table 1: Soil Test Hole Results

The soils consist of a thin layer of clayey topsoil, a heavy clay subsoil then rock. The depth to rock in the test holes varied from minimum 0.23m, to maximum 0.82m. Some small patches of rock outcrop were visible on the surface.

Slope & Aspect: Aspect varies between westerly and southerly. Slop varies from flat at the top of the hill, to 25% fall outside of the landslide hazard areas, and up to 50% (1 in 2) in the Landslide hazard areas.

Drainage: Good natural surface drainage over the site.

Groundwater: No water table evident in test toles,

4. Assessment

<u>Methodology</u>

The suitablility of the site for onsite wastewater disposal is assessed by:

- Consideration of the Planning Scheme Overlays for the site
- Consideration for Nutrient Balance and Sustainable Wastewater Application
- Determining the required onsite wastewater disposal areas and setbacks for each lot and assessing whether these can be accommodated for each lot. Details for that assessment are shown in this section and presented in the Onsite Wastewater and Stormwater Disposal Plan in Appendix 1.
- Determining the required onsite stormwater disposal areas for each lot where applicable.

Addressing of Planning Scheme Code Overlays

There is no permanent surface water on the lots. Iron Creek is immediately south-west of the lots.

The four Planning Scheme Code Overlays applicable to the site are listed below, together with a description of how they are addressed:

- Landslip Hazard Code (Low and Medium Landslip Hazard Bands) All wastewater disposal areas can be located outside of the landslip hazard zones
- Natural Assets Code (Waterway and Coastal Protection Area) All wastewater disposal areas can be located sufficient setback distance from the surface water, in accordance with the Director's Guidelines for On-site Wastewater (2017).
- Bushfire Prone Areas Code Not applicable
- Safeguarding of Airports Code (Airport Noise Exposure Area, Airport obstacle limitation area Not applicable

Nutrient Balance and Sustainable Wastewater Application

The clayey soils have a high cation exchange capacity (CEC) for retention of nutrients. The soils across the site area are classified according to AS1547-2012 as Category 6 – Medium to Heavy Clay.

The soils returned Emerson dispersion test results of class 5. This is only very minor dispersion after shaking of the sample.

Therefore, the soils have a high capacity to retain nutrients in applied wastewater.

Wastewater Disposal Area Required

The capability of the proposed new lots to support a typical residential dwelling and on-site wastewater disposal have been evaluated using the required disposal areas and setbacks as specified in the Director's Guidelines for On-site Wastewater (2017).

The site is unsuited to the installation of a traditional septic tank and trenches due to the shallow depth to bedrock. Secondary treatment of wastewater, or primary treatment with a raised mound will be required. For the purpose of this assessment secondary treatment is assumed.

To determine the disposal area required the following parameters have been used:

- Four bedroom home with six occupants (equivalent of 3 bedrooms with 2 occupants per bedroom)
- Category 6 (Medium to Heavy Clay) soils.
- Secondary treatment

The calculated disposal area is 3 bedrooms equivalent $x = 90m^2$ per bedroom = 270m^2. A reserve disposal area with the same area is also allowed for on each lot.

Setback Distances to Boundaries and Sensitive Features

The setback distance required from wastewater disposal areas to boundaries, watercourses, and buildings is dependent on the slope in the relevant location. Calculations for relevant setbacks have been done using a spreadsheet.

Only the "critical" situations have been calculated. These are the situations with the steepest slopes and in the closest proximity to relevant features. For simplicity, the setbacks in the locations with gentle slopes and not close to relevant features have not been shown.

A screenshot of that spreadsheet is shown in Appendix 3. All of these setbacks calculated in the table are able to be achieved.

Allowance for onsite Stormwater Disposal

Lots 1-3, 6, 9, 14 and 15 will be able to drain run-off from hardstand areas to the street frontage, Iron Creek, or a Council stormwater main passing through the property. The remainder of the lots will need to dispose of run-off from impervious areas on site.

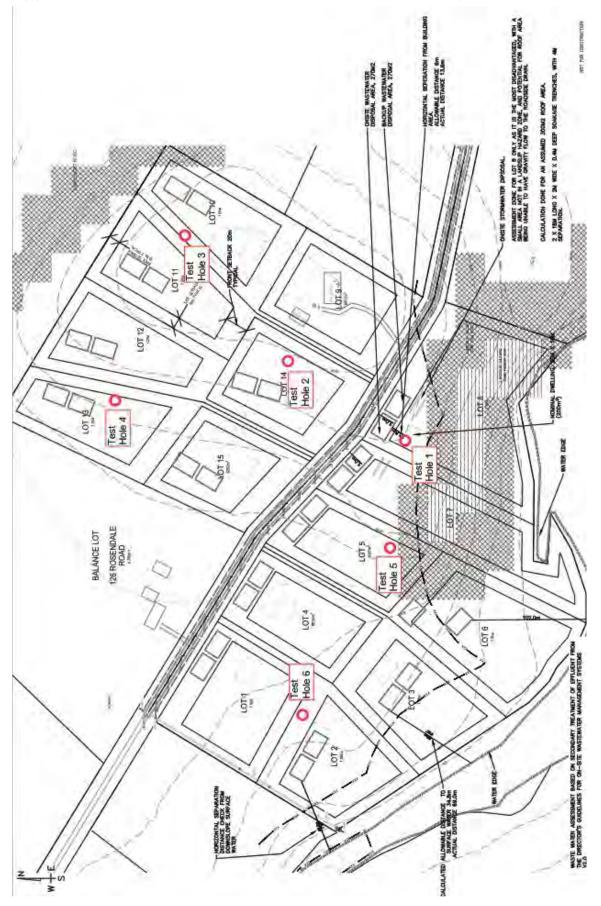
An assessment for disposal of stormwater from roof areas has been done for the two lots that have more than half of the lot covered by a Landslide Hazard Overlay, Lots 7 and 8. Details for that assessment are shown in Appendix 1. This assessment demonstrates that if onsite stormwater disposal is required in those lots, then there is sufficient space available for it outside of the landslide hazard areas, in addition to the onsite wastewater disposal areas.

All of the other lots that would require onsite disposal of stormwater have more space available than Lots 7 and 8 and therefore also have sufficient capacity for onsite stormwater disposal in addition to the onsite wastewater disposal areas.

5. Conclusion

This assessment demonstrates that the subdivision proposal allows sufficient space on each lot for wastewater disposal (including a backup disposal area and stormwater disposal area if needed), meets the requirements of the Planning Scheme and Building Code, and has adequate setbacks to boundaries and sensitive features.

The disposal areas and setbacks for each lot are shown in Appendix 1.


The actual design for the wastewater systems for each lot will need to be determined when assessing the development proposal for those individual lots.

6. Appendices

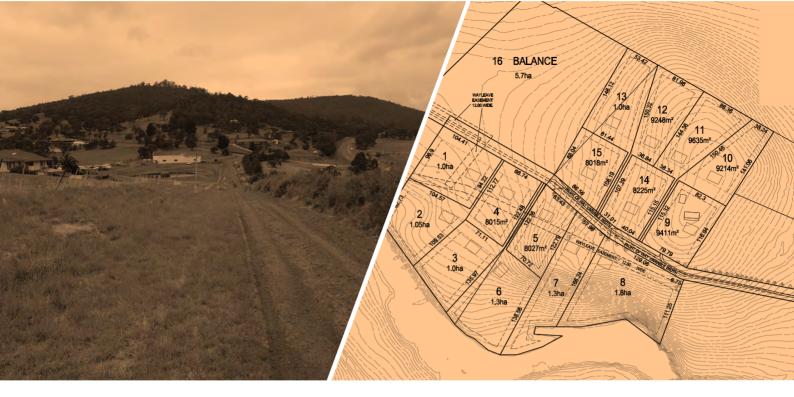
Appendix 1: Onsite Wastewater and Stormwater Disposal Plan

Appendix 2: Wastewater Disposal Area Setback Calculations

Appendix 3: Photos

Integral Consulting Engineers - 9 Valleyfield Rd, Sorell

23201-02 (Rev A)


Appendix 2: Wastewater Disposal Area Setback Calculations

	A1			A2			A3		
	Horizontal separation distance from a building to a land application area must comply with one of the following:		Horizontal separation distance from downslope surface water to a land application area must comply with (a) or (b)			Horizontal separation distance from a property boundary to a land application area must comply with either of the following:			
	(b) If secondary application, i every degre d	or or y treated effluent no less than 2m p eo f average gra ownslope buildin	and subsurface olus 0.25m for idient from a	(b) be no l (i) if <u>primary</u> treate degree of average gra (ii) if <u>secon</u>	dient to downslo or <u>dary</u> treated efflu plication, <u>15m pl</u> i	wing: us 7m for every ope surface water; uent and us 2m for	(a) be no less than 40m from a property bour or (b) be no less than: (i) 1.5m from an upslope or level property boundary; and (ii) If primary treated effluent 2m for every degree of average gradient from a down property boundary; or (iii) If secondary treated effluent and subsurface application, 1.5m plus 1m for every degree of average gradient from downslope property boundary.		or level nd t 2 m for om a downslope or luent and n plus 1m adient from a
	Primary or secondary: Distance slope	Secondary		Primary or secondary:	Secondary 2		Distance slope	Secondary	
	factor	0.25		Distance slope factor	2		factor	1	
LOT	PPLICABL	SLOPE	DISTANCE	APPLICABLE	SLOPE	DISTANCE	APPLICABLE	SLOPE	DISTANCE
1	yes	4	3						
2				yes	10	35			
3				yes	9.9	35			
4	yes	4	3						
5	yes	6	3.5						
6			2	yes	6	27			
7	yes	2	2.5	-					
8	yes		6	yes	22	59			
9									
10							yes	8	9.5
11							yes	8	9.5
12							yes	8	9.5
13							yes	8	9.5
14							yes	8	9.5
15							yes	8	9.5

Appendix 3: Photos

Photo 1: Test hole 1, Lot 8
Photo 2: Test hole 3, Lot 10 / Lot 11.

Photo 3: Test Hole 6, Lot 1 / Lot 2
Photo 4: View of site including Landslip Hazard Area from Arthur Highway
Photo 5: View of site including Landslip Hazard Area and Iron Creek.

9 VALLEYFIELD ROAD, SORELL PROPOSED RESIDENTIAL SUBDIVISION

TRAFFIC IMPACT ASSESSMENT REPORT

Development Application:Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plan Reference:P3

SALT

Date received:23/02/2024

9 VALLEYFIELD ROAD, SORELL PROPOSED RESIDENTIAL SUBDIVISION

Client: Ireneinc Planning & Urban Design Report Reference: 23603T File Path: Y:\2023\23603 - 9 Valleyfield Rd, Sorell\08 Reports\23603TREP01F01.docx

Monday, December 04, 2023

Document Control

Version:	Prepared By:	Position:	Date:	Reviewed By:	Position:	Date:
F01	Bernhard Weyers	Project Traffic Engineer	04/12/2023	Jarrod Wicks	Director	04/12/2023

© Sustainable Transport Surveys Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to Sustainable Transport Surveys Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of Sustainable Transport Surveys Pty Ltd.

This document is produced by Sustainable Transport Surveys for the benefits and use by the client in accordance with the terms of engagement. Sustainable Transport Surveys does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

MELBOURNE Level 3, 51 Queen St Melbourne VIC 3000 T: +61 3 9020 4225

SYDNEY Level 6, 201 Kent St Sydney NSW 2000 T: +61 2 9068 7995

HOBART Level 4, 116 Bathurst St Hobart TAS 7000 T: +61 400 535 634

CANBERRA Level 3, 33-35 Ainslie PI Canberra ACT 2601 T: +61 2 9068 7995

ADELAIDE Level 21, 25 Grenfell St Adelaide SA 5000 T: +61 8 8484 2331

www.salt3.com.au

Т

CONTENTS

1	INT	RODUCTION	2
2	EXI	ISTING CONDITIONS	2
	2.1	LOCATION & LAND USE	2
	2.2	ZONING	3
	2.3	ROAD NETWORK	4
		2.3.1 ARTHUR HIGHWAY	4
		2.3.2 VALLEYFIELD ROAD	4
		2.3.3 ROSENDALE ROAD	5
	2.4	SUSTAINABLE TRANSPORT	6
	2.5	EXISTING TRAFFIC VOLUMES	7
	2.6	CRASH HISTORY	8
3	PRC	OPOSAL	9
4	VEF	9	
	4.1	ROAD NETWORK	9
	4.2	ROAD CROSS SECTIONS	
	4.3	PEDESTRIAN ACCESS	
	4.4	EMERGENCY AND SERVICE VEHICLE ACCESS	13
	4.5		
5	TRA	AFFIC GENERATION, DISTRIBUTION, AND IMPACT	14
	5.1	TRAFFIC GENERATION	14
	5.2	TRAFFIC DISTRIBUTION	14
	5.3	TRAFFIC IMPACT	
6	CON	NCLUSION	19
AF	PEN	IDIX 1 PROPOSED SUBDIVISION LAYOUT	
AF	PEN	IDIX 2 TASMANIAN STANDARD DRAWING TSD-R02-V3	21
AF	'PEN	VDIX 3 SIDRA RESULTS	

LIST OF FIGURES

Figure 1	Subject site location (Source: LISTmap)	2
Figure 2	Aerial view of subject site (Source: Nearmap)	3
Figure 3	Subject site zoning map (Source: LISTmap)	4
Figure 4	Valleyfield Road looking north	5
Figure 5	Valleyfield Road looking south	5
Figure 6	Valleyfield access road looking east	5
Figure 7	Valleyfield access road looking west	5
Figure 8	Rosendale Road looking north	6
Figure 9	Rosendale Road looking south	
Figure 10	Rosendale Road looking east	6
Figure 11	Rosendale Road bridge over Iron Creek	6
Figure 12	Rosendale access road looking east	6
Figure 13	Rosendale access road looking west	
Figure 14	Weekday AM peak hour traffic volumes (7:30 - 8:30am)	
Figure 15	Weekday PM peak hour traffic volumes (4:00 - 5:00pm)	8
Figure 16	Crashes since 1 January 2009 (Source: ArcGIS / Department of State Growth)	9
Figure 17	Required sealing of access road and Valleyfield Road	
Figure 18	Proposed eastern access road realignment	
Figure 19	Expected peak hour traffic distribution on access road	15
Figure 20	Expected peak hour traffic distribution at Valleyfield Road / Arthur Highway intersection	

LIST OF TABLES

Table 1	Recommended road cross sections (Tasmanian Standard Drawings TSD-R02-v3)	
Table 2	Bushfire-prone areas code standards for roads (Table C13.1 to Clause C13.6.2)	
Table 3	Bushfire-prone areas code standards for property access (Table C13.2 to Clause C13.6.2)	12
Table 4	Level of Service ratings	
Table 5	Key SIDRA analysis results (weekday AM and PM peak hours, year 2023)	

1 INTRODUCTION

SALT has been engaged by Ireneinc Planning & Urban Design to undertake a traffic engineering assessment for the proposed rural residential subdivision at 9 Valleyfield Road in Sorell.

The following tasks were undertaken while preparing this report:

- The subject site, nearby environs, and surrounding road network have been inspected;
- Traffic volume data was collected at the intersections of Valleyfield Road and Rosendale Road with Arthur Highway;
- Development plans have been reviewed and design advice has been provided;
- The application has been assessed against all the relevant town planning scheme and other standard design requirements; and
- The expected traffic impacts of the proposal have been assessed.

The following sets out SALT's findings with respect to the traffic engineering matters of the proposed development.

2 EXISTING CONDITIONS

2.1 LOCATION & LAND USE

The site is located on the northern side of Arthur Highway in Sorell. The site is bordered by rural land in the north, Iron Creek in the south, and existing single residential dwellings in the east and west.

The subject site comprises 2 lots, with the addresses being 9 Valleyfield Road (eastern lot, \pm 11.5778 ha in extent) and 123 Rosendale Road (western lot, \pm 9.5515 ha in extent); the subject site has an overall area of 21.1293 ha. Each lot is currently occupied by a single dwelling, as well as ancillary buildings, e.g., sheds. Valleyfield Road provides access to the eastern part of the site, while the western part of the site is accessed via Rosendale Road.

The surrounding land use is primarily rural / agricultural, which includes a limited number of services and small businesses throughout the area.

Figure 1 below shows the locality of the site with respect to the surrounding road network and nearby towns, and Figure 2 below shows an aerial view of the subject site.

Figure 1 Subject site location (Source: LISTmap)

2

Figure 2 Aerial view of subject site (Source: Nearmap)

2.2 ZONING

The site is in an area that falls under the jurisdiction of Sorell Council, which is zoned 'Rural Living Zone A'. The site is subject to the following overlays and codes:

- Bushfire-prone areas;
- Airport obstacle limitation area;
- Airport noise exposure area;
- Landslip hazard;
- Coastal inundation hazard;
- Priority vegetation;
- Future coastal refugia area; and
- Waterway and coastal protection area;

The area within which the subject site is located is not included in the Sorell Local Provisions Schedule. The zoning map is provided in **Figure 3** below. Please note that no overlays are shown for purposes of clarity.

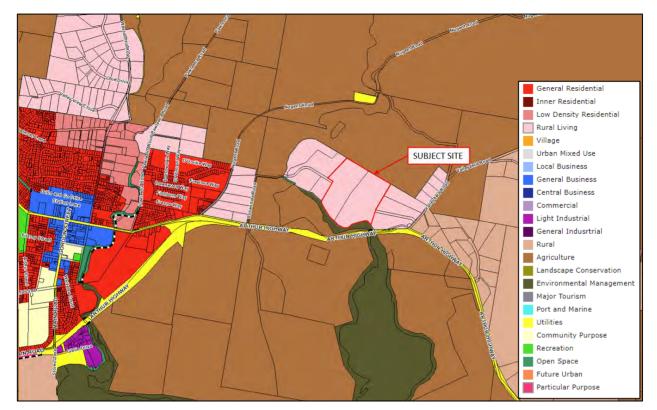


Figure 3 Subject site zoning map (Source: LISTmap)

2.3 ROAD NETWORK2.3.1 ARTHUR HIGHWAY

Arthur Highway is a National State highway under the care and management of the Department of State Growth (DSG) and is separated from the subject site by Iron Creek. Initially it follows an east-west alignment but then changes to a north-south alignment – it connects Sorell in the west with Port Arthur in the south-east. Arthur Highway is a sealed two-lane single-carriageway road with an approximate width of 9.0m. This includes a 3.5m wide traffic lane in each direction and 1.0m wide paved shoulders on both sides. Generally, kerb and channel has not been provided on either side of the carriageway. There are left and right-turn deceleration lanes at the Valleyfield Road intersection, whilst at Rosendale Road there is a left-turn deceleration lane and a right-turn passing lane (otherwise known as an overtaking lane). The posted speed limit varies between 80 km/h and 100 km/h.

2.3.2 VALLEYFIELD ROAD

Valleyfield Road is a local road under the care and management of Council. It follows various alignments and provides several properties with access to Arthur Highway. Valleyfield Road is a two-way unsealed road with an approximate width of 5.0m; vehicles generally travel in the middle of the carriageway when no other vehicles are present. The subject site will be served by a private access road that bisects the site and intersects with Valleyfield Road approximately 110m north of Arthur Highway. This access road is an unsealed single-track with varying widths along the section, but an average width of about 2.7m has been measured. Vehicles would therefore be required to move to the side to allow passing; there is however sufficient verge on the northern side to accommodate this. It is noted that this can be expected to occur only very seldomly since the access road serves a single property.

A low point on the private access road is located approximately 130m west of Valleyfield Road, with a fall of \pm 20m (\pm 8.7% / 1:11.5 gradient) between the site's eastern boundary and this low point. The rise between the low point and the intersection with Valleyfield Road is \pm 10m (\pm 7.7% / 1:13 gradient).

There are no posted speed limits; the general rural default for unsealed roads outside built-up areas of 80 km/h thus applies. It is nevertheless noted that motorists should 'drive to the conditions' as per the Tasmanian Speed Zoning Guidelines. It was accordingly observed during the site visit that an operating speed of about 40 - 50 km/h is more appropriate, while about 30 - 40 km/h was observed as a suitable operating speed on the access road.

Figure 4 to Figure 7 below show views of Valleyfield Road and the Valleyfield access road.

Figure 4 Valleyfield Road looking north

Figure 5 Valleyfield Road looking south

Figure 7 Valleyfield access road looking west

2.3.3 ROSENDALE ROAD

5

Rosendale Road is a local road under the care and management of Council. It starts with a north-south alignment and ends with an east-west alignment, and it provides several properties with access to Arthur Highway. Rosendale Road is a two-way unsealed road with an approximate width of 5.0m; vehicles generally travel in the middle of the carriageway when no other vehicles are present. Rosendale Road terminates at its crossing of Iron Creek at approximate chainage 660m from Arthur Highway; a private access road that commences at the bridge will serve the subject site. This access road is an unsealed road with varying widths along the section, but an average width of 3.2m has been measured. Vehicles would therefore be required to move to the side to allow passing; there is however sufficient verge on both sides to accommodate this. It is noted that this can be expected to occur only very seldomly since the access road serves only four lots. Although a suitable alignment already exists between the Valleyfield and Rosendale private access roads, a link has not yet been established. The bridge over Iron Creek has an effective width of 4.9m.

There are no posted speed limits; the general rural default for unsealed roads outside built-up areas of 80 km/h thus applies. It is nevertheless noted that motorists should 'drive to the conditions' as per the Tasmanian Speed Zoning Guidelines. It was accordingly observed during the site visit that an operating speed of about 40 - 50 km/h is more appropriate, while about 30 - 40 km/h was observed as a suitable operating speed on the access road.

The section of the private access road on the subject site is relatively flat. A rise of $\pm 13m$ ($\pm 16.3\%$ / 1:6 gradient) occurs along the access road between the bridge (i.e., low point) and the elevated flat section.

Figure 8 to Figure 13 below show views of Rosendale Road and the Rosendale access road.

Figure 8 Rosendale Road looking north

Figure 9 Rosendale Road looking south

Figure 10 Rosendale Road looking east

Figure 11 Rosendale Road bridge over Iron Creek

Figure 13 Rosendale access road looking west

Figure 12 Rosendale access road looking east

2.4 SUSTAINABLE TRANSPORT

6

There are no sustainable transport options in the area. The closest bus stop is in the town of Sorell, about 3.0 km from the subject site.

2.5 EXISTING TRAFFIC VOLUMES

SALT conducted weekday AM and PM peak hour traffic surveys on Wednesday 16 November 2023 at the Valleyfield Road / Arthur Highway intersection. The traffic surveys were undertaken during the typical on-road peak hours, which may not necessarily be the actual peak hours. Furthermore, the surveys included turning volumes at 15-minute intervals as well as light and heavy vehicle classification.

The weekday AM and PM peak hour volumes are shown diagrammatically in Figure 14 and Figure 15 below.

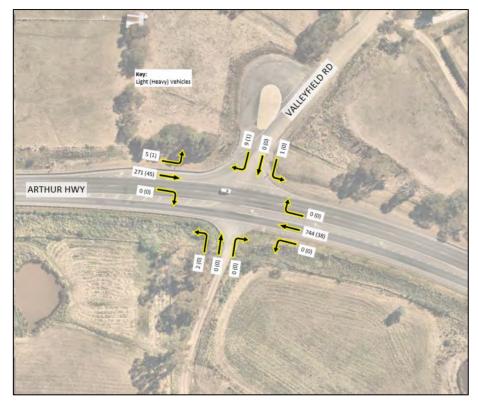


Figure 14 Weekday AM peak hour traffic volumes (7:30 - 8:30am)

	Key: Light (Heavy) Vehicles	6	WHERE BR		I
ARTHUR HWY	822 (21) 2 (0)		All the state	No.	
S			457 (29) 1 (0)		

7

Figure 15 Weekday PM peak hour traffic volumes (4:00 - 5:00pm)

It is noted that no lengthy delays or significant vehicle queueing were observed during either peak hour.

In addition to the traffic surveys described above, classified 15-minute 'spot' surveys were also conducted at the Rosendale Road / Arthur Highway intersection during the same AM and PM peak periods – these surveys consisted of turning movements to / from the Rosendale Road approach only.

The results of the 'spot' surveys were as follows:

- Weekday AM peak 15-minute period (7:00 7:15am)
 - Rosendale Road southbound left-turn 0
 - Rosendale Road southbound right-turn 3
 - Arthur Highway eastbound left-turn 0
 - Arthur Highway westbound right-turn 0
- Weekday PM peak 15-minute period (5:15 5:30pm)
 - Rosendale Road southbound left-turn 7
 - Rosendale Road southbound right-turn 2
 - Arthur Highway eastbound left-turn 8
 - Arthur Highway westbound right-turn 2

It is noted that no lengthy delays or significant vehicle queueing were observed during either peak period.

2.6 CRASH HISTORY

A review of the Tasmanian vehicle crash data for the most recent 5-year period, ending 19 February 2021, has shown the following in terms of crashes on Arthur Highway:

- 10 x property damage only crashes:
 - 1 x DCA 120: Wrong side / other head on (not overtaking)#;
 - 2 x DCA 130: Vehicles in same lane / rear end;
 - 2 x DCA 132: Vehicles in same lane / right rear*;
 - 1 x DCA 139: Other same direction (including vehicle rolling backwards);
 - 1 x DCA 149: Other manoeuvring;
 - 1 x DCA 152: Pulling out;
 - 1 x DCA 167: Animal (not ridden); and
 - 1 x DCA 191: Load or missile struck vehicle.
- 1 x first aid crash:
 - 1 x DCA 110: Cross traffic.
- 6 x minor crashes:

8

- 1 x DCA 113: Right rear*;
- 1 x DCA 120: Wrong side / other head on (not overtaking);
- 1 x DCA 149: Other manoeuvring;
- 1 x DCA 173: Right off carriageway into object or parked vehicle;
- 1 x DCA 184: Out of control on carriageway; and
- 1 x DCA 189: Other curve.

(In the list above, "*" indicates crashes that occurred at the Valleyfield Road / Arthur Highway intersection, while "#" indicates crashes that occurred at the Rosendale Road / Arthur Highway intersection.)

The crash trend during the 5-year period shows a generally low level of severity – most of the crashes were property damage only crashes, followed by minor crashes.

The crash history review area is shown in **Figure 16** below. It is noted that the crash history shown in **Figure 16** below includes data that precedes the 5-year period up to 19 February 2021; this data was excluded from the crash history review.

Figure 16 Crashes since 1 January 2009 (Source: ArcGIS / Department of State Growth)

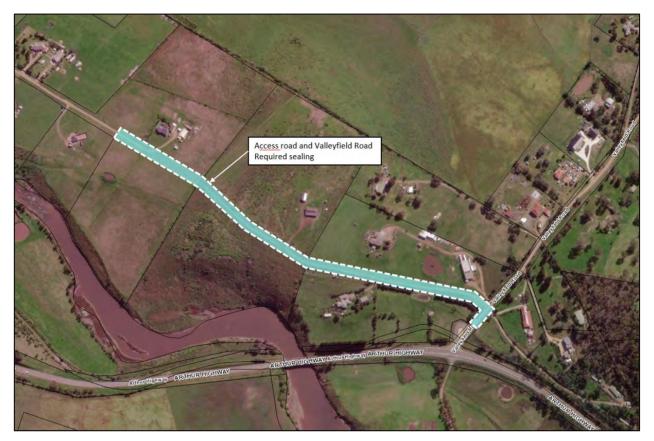
3 **PROPOSAL**

The proposal is to develop a 15-lot residential subdivision. The lot sizes will range from about 0.8 - 1.8 ha, with an average lot size of approximately 1.03 ha. A 16th lot, about 5.7 ha in size, will take up the balance of the subject site, with no development currently planned on this lot.

The subject site will be served by both Valleyfield Road and Rosendale Road, with Valleyfield Road being the primary access route.

The proposed subdivision layout is shown in **APPENDIX 1** at the end of this report.

4 VEHICLE ACCESS & DESIGN MATTERS


4.1 ROAD NETWORK

Access to the subdivision will be provided by existing private access roads, one of which intersects with Valleyfield Road in the east, and the other being an extension of Rosendale Road in the west. A suitable alignment between these access roads already exists; however, a link has not yet been provided (i.e., both access roads are dead ends). This link must be established to create a continuous route between Valleyfield Road and Rosendale Road.

Both Valleyfield Road and Rosendale Road are currently unsealed, except for these roads' approaches at their intersections with Arthur Highway. The private access roads are also unsealed.

It is recommended that sealing the eastern part of the access route, i.e., the section that connects with Valleyfield Road, as well as section of Valleyfield Road between Arthur Highway and the access road, be included as a condition for permit approval – refer to **Figure 17** below. Conversely, it is not recommended that sealing of the western part of the access route (i.e., Rosendale Road) be included as a condition for permit approval.

Figure 17 Required sealing of access road and Valleyfield Road

The above recommendations are based on the following:

- It is expected that access to and from the subject site will almost exclusively occur via the eastern Valleyfield Road access route. This is based on the following:
 - Most of the lots will be located in the eastern part of the subject site;
 - The intersection of Valleyfield Road with Arthur Highway was upgraded in March 2020 to include an
 overtaking lane as well as dedicated turning lanes on Arthur Highway, resulting in better access than
 what is currently provided at the Rosendale Road intersection.
 - A sealed road pavement will be provided between all proposed lots and Valleyfield Road, which will
 encourage residents to follow this route rather than a narrower, gravel carriageway being Rosendale
 Road;
- Rosendale Road has a comparatively narrow road reserve which has already undergone widening, refer to Section 4.2 – and the potential requirement of additional widening to accommodate a sealed road (based on existing conditions) is not considered appropriate, especially since an alternative exists that includes wider road reserves; and
- The volume of traffic that would choose to use Rosendale Road is extremely low in traffic engineering terms estimated at 2 peak hour vehicle movements (refer to Section 5). Rosendale Road was observed to carry up to 19 movements in a 15-minute period, hence the percentage increase would be very low. It would therefore be unequitable to burden one landowner with sealing a road that currently carries significantly more traffic than would be added.

4.2 ROAD CROSS SECTIONS

The width of the proposed access road reserve is 20m, while Valleyfield Road is accommodated within a road reserve that is approximately 18.5m wide – this includes a \pm 4.9m widening on the western side. Rosendale Road has a narrower road reserve that varies between approximately 13.5 – 15.5 m, which includes a \pm 3.9m widening on the eastern and southern sides.

The recommended seal of Valleyfield Road must be to the same standards and specifications as the existing sealed northern approach of the Arthur Highway intersection.

Table 1 below provides details in terms of the recommended road cross sections for the eastern access road, as per the Tasmanian Standard Drawings (Version 3, December 2020), which must be read with the relevant sections, parts, and clauses of the Sorell Council Transport Asset Management Plan (April 2021), the Tasmanian Municipal Standard Specifications (March 2020), the Tasmanian Subdivision Guidelines (October 2013), and the Tasmanian Planning Scheme – State Planning Provisions. The cross-section details are attached as **APPENDIX 2**.

Table 1 Recommended road cross sections (Tasmanian Standard Drawings TSD-R02-v3)
--

Street Type	Carriageway Width	Sealed Traffic Width	Verge	Edge Treatment ²	Surface Treatment ⁴
Local Access (AADT < 200) ¹	6.5m (20m Road Reserve)	5.5m Dual Lane	0.5m Both sides	0.4m Sealed ³ 0.5m Gravel	Two coat 'Hot Bitumen' spray seal. Aggregate 10/7 or 14/7 optional.

¹ Refer to Section 5.1.

² Edge treatment can be either sealed or gravel.

³ 0.4 metres of shoulder sealed if edge line is to be installed.

⁴ Surface type to be determined with consideration to vehicle types / turning movement, location and grade.

As stated in **Section 2.2**, the site is subject to the Bushfire-prone areas overlay and thus triggers the Bushfireprone areas code (Clause C13.0) of the planning scheme. The requirements for roads (Table C13.1 to Clause C13.6.2) and property accesses (Table C13.2 to Clause C13.6.2) are detailed in **Table 2** and **Table 3** below.

Table 2 Bushfire-prone areas code standards for roads (Table C13.1 to Clause C13.6.2)

Element	Requirement (Unless the development standards in the zone require a higher standard, the following apply:)	Response
	Two-wheel drive, all-weather construction;	The proposed seal will comply with this requirement.
	Load capacity of at least 20 tonnes, including for bridges and culverts;	The proposed seal will comply with this requirement.
A – Roads	Minimum carriageway width is 7m for a through road, or 5.5m for a dead-end or cul-de-sac road;	It is recommended that the 6.5m width requirement, as per TSD-R02-v3, be maintained. The objective of the 7m width requirement is to ensure that passing between a firetruck and other vehicles can comfortably be accommodated on the carriageway. Given that the through road will almost exclusively be used by traffic related to the proposed subdivision, which volumes will be minimal (refer to Section 5.1), a carriageway width of 6.5m is considered adequate to accommodate the expected traffic in possible emergency situations. In addition, the short distance of the access road between the western boundary of the subject site and Valleyfield Road (±800m) further supports this recommendation.

Element	Requirement (Unless the development standards in the zone require a higher standard, the following apply:)	Response		
		TSD-R02-v3 is attached at the end of this report as APPENDIX 2 .		
	Minimum vertical clearance of 4m;	The road will comply with this requirement.		
	Minimum horizontal clearance of 2m from the edge of the carriageway;	The road will comply with this requirement.		
	Cross falls of less than 3 degrees (1:20 or 5%);	The proposed seal will comply with this requirement – refer to APPENDIX 2 .		
	Maximum gradient of 15 degrees (1:3.5 or 28%) for sealed roads, and 10 degrees (1:5.5 or 18% for unsealed roads);	The existing road already complies with this requirement – refer to Section 2.3.2 . The proposed seal will comply with this requirement.		
	Curves have a minimum inner radius of 10m;	The road will comply with this requirement.		
	Dead-end or cul-de-sac roads are not more than 200m in length unless the carriageway is 7m in width;	Not applicable. The existing dead-end road will be linked with another dead- end road to create a new through road.		
	Dead-end or cul-de-sac roads have a turning circle with a minimum 12m outer radius; and	Not applicable. The existing dead-end road will be linked with another dead- end road to create a new through road.		
	Carriageway less than 7m wide have 'No Parking' zones on one side, indicated by a road sign that complies with <i>Australian Standard AS1743:2018 Road signs-</i> <i>Specifications</i> .	On-street parking will be appropriately controlled to ensure compliance with this requirement.		

Table 3 Bushfire-prone areas code standards for property access (Table C13.2 to Clause C13.6.2)

Element ¹	Requirement (The following design and construction requirements apply to property access:)	Response
B – Property	All-weather construction;	The relevant accessways must comply with this requirement.
access length is 30m or greater; or access is required for a fire appliance	Load capacity of at least 20t, including for bridges and culverts;	The relevant accessways must comply with this requirement.
	Minimum carriageway width of 4m;	The 'panhandles' currently have proposed widths of 3.6m, which must be widened to ensure compliance with this requirement.

Element ¹	Requirement (The following design and construction requirements apply to property access:)	Response
to a fire fighting water point.	Minimum vertical clearance of 4m;	The relevant accessways must comply with this requirement.
	Minimum horizontal clearance of 0.5m from the edge of the carriageway;	The relevant accessways must be sufficiently wide to ensure compliance with this requirement.
	Cross falls of less than 3 degrees (1:20 or 5%);	The relevant accessways must comply with this requirement.
	Dips less than 7 degrees (1:8 or 12.5%) entry and exit angle;	The relevant accessways must comply with this requirement.
	Curves with a minimum inner radius of 10m;	The relevant accessways must comply with this requirement.
	Maximum gradient of 15 degrees (1:3.5 or 28%) for sealed roads, and 10 degrees (1:5.5 or 18% for unsealed roads); and	The relevant accessways must comply with this requirement.
	 Terminate with a turning area for fire appliances provided by one of the following: A turning circle with a minimum outer radius of 10m; or A property access encircling the building; or A hammerhead "T" or "Y" turning head 4m wide and 8m long. 	The relevant accessways must comply with this requirement.

[†] The proposed subdivision includes several 'panhandle' lots that have access lengths greater than 30m, which triggers Element B.

4.3 PEDESTRIAN ACCESS

Clause 11.2 of the Tasmanian Subdivision Guidelines (October 2013) states that: "Subject to Clause 14, footpaths and kerb and channel are not required in rural roads." Clause 14.2, in turn, states that: "The Council may at its discretion require a rural road to contain footpaths and/or kerb and channel on one or both sides of the pavement." The provision of footpaths in conjunction with the proposed seal is thus not a strict requirement.

Footpaths have not been provided in the surrounding area; there is thus not an existing pedestrian footpath network that any new footpaths can integrate with. It is thus recommended that the provision of footpaths <u>not</u> be a condition for permit approval.

4.4 EMERGENCY AND SERVICE VEHICLE ACCESS

 Table 2 and Table 3 above detail the requirements for emergency vehicle access. Likewise, Council's waste collection service will obtain satisfactory access, with all movements able to be carried out in a forward direction.

4.5 SIGHT DISTANCE

The available sight distance on Valleyfield Road to the north of the Valleyfield Road / Eastern access road intersection is ±90m, which is slightly less than the safe intersection sight distance (SISD) requirement of 97m as per Table 3.2 to Clause 3.2.2 of the Austroads Guide to Road Design Part 4a – the requirement is based on a design speed of 50 km/h (refer to the description of Valleyfield Road in **Section 2.3.2**). Although not compliant with the minimum required SISD, the available sight distance is nevertheless regarded as being suitable in this case since this is an existing situation and there is no sight distance related historical crash data along this section of Valleyfield Road. Furthermore, it is expected that the recommended sealing of the access road (refer to **Section 4.1**)

will include a realignment of the access road at the Valleyfield Road intersection towards the south, which will improve the sight distance. This is shown in **Figure 18** below.

The available sight distance on Valleyfield Road to the south of the Valleyfield Road / Eastern access road intersection is $\pm 105m$, which complies with the minimum required SISD.

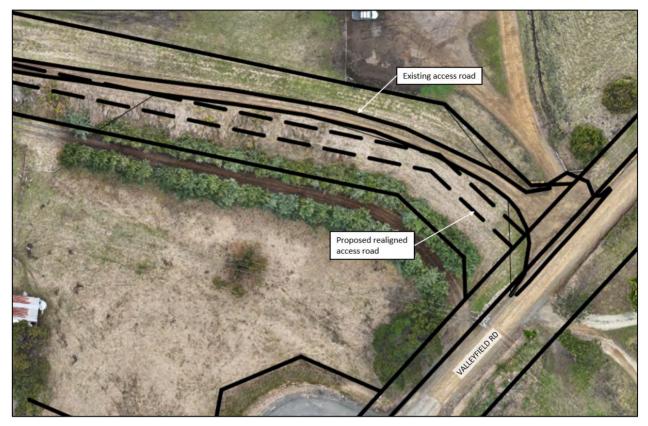


Figure 18 Proposed eastern access road realignment

TRAFFIC GENERATION, DISTRIBUTION, AND IMPACTTRAFFIC GENERATION

A peak hour trip rate of 0.85 trips per dwelling has been adopted as per the RTA Guide to Traffic Generating Developments, which means that the proposed 15-lot subdivision can be expected to generate approximately 13 peak hour vehicle trips. Similarly, a daily trip generation rate of 9 daily trips per dwelling has been adopted, which translates into an expected trip generation of about 135 daily trips, with 13 of those occurring in each commuter peak hour.

The following inbound / outbound splits are typical for residential developments:

- AM Peak Hour: 20% inbound / 80% outbound; and
- PM Peak Hour: 60% inbound / 40% outbound.

Applying these splits to the expected traffic generation of 13 vehicle trips results in the following:

- AM Peak Hour: 3 inbound / 10 outbound; and
- PM Peak Hour: 8 inbound / 5 outbound.

5.2 TRAFFIC DISTRIBUTION

The estimated traffic distribution to and from the proposed residential development is based on the location and layout of the surrounding road network, as well as the characteristics of the surrounding area. An additional consideration is the existing traffic directional splits on Arthur Highway, which were determined from the traffic volume survey data – the data showed that, for both the AM and PM peak hours, the eastbound / westbound directional split was about 50 / 50.

Based on the above, it is estimated that the traffic will distribute as follows:

- Access road:
 - 90% of trips will be to / from the east (i.e., towards Valleyfield Road); and
 - 10% of trips will be to / from the west (i.e., towards Rosendale Road).
- Arthur Highway:
 - 30% of trips will be to / from the east (i.e., towards Forcett); and
 - 70% of trips will be to / from the west (i.e., towards Sorell).

In addition to the above, it is also expected that all the trips that distribute to / from the site towards Rosendale Road will exclusively distribute towards Sorell.

The corresponding traffic distributions are shown in Figure 19 and Figure 20 below.

Figure 19 Expected peak hour traffic distribution on access road

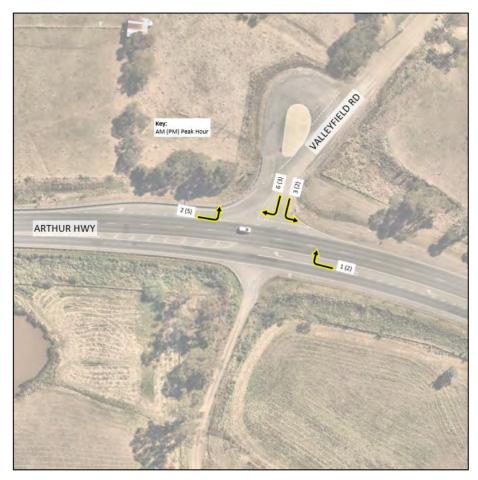


Figure 20 Expected peak hour traffic distribution at Valleyfield Road / Arthur Highway intersection

5.3 TRAFFIC IMPACT

The proposal is expected to result in 135 new daily vehicle trips being added to the surrounding road network, with 13 of those occurring in each commuter peak hour. Given that the existing volumes on Valleyfield Road and Rosendale Road are low – refer to **Section 2.5** – the additional traffic due to the proposal will have a minimal impact on these roads.

The traffic operations of the Valleyfield Road / Arthur Highway intersection were analysed using SIDRA Intersection v9.1. SIDRA is a micro-analytical traffic evaluation tool that provides estimates of capacity and performance statistics on a lane-by-lane basis. Key performance criteria include:

Degree of Saturation (DOS):	This represents the ratio of traffic volume to capacity. Generally speaking, a DOS of below 0.9 indicates acceptable performance. A DOS of over 1.0 indicates that capacity has been exceeded.
Level of Service (LOS):	An index of the operational performance of traffic based on service measures such as delay, degree of saturation, density, and speed during a given flow period. A guide to LOS ratings is provided in Table 4 below.
Average Delay:	The average delay time that can be expected for a given movement.
95 th Percentile Queue:	The maximum queue length that can be expected in 95% of all observed queue lengths during the hour.

Table 4 Level of Service ratings

Level of	Со	Control delay per vehicle in seconds (d) (Including geometric delay)		
Service	Signals	"SIDRA Roundabout LOS" option	Sign Control	(x)
А	d ≤ 10	d ≤ 10	d ≤ 10	0 < x ≤ 0.85
В	10 < d ≤ 20	10 < d ≤ 20	10 < d ≤ 15	0 < x ≤ 0.85
С	20 < d ≤ 35	20 < d ≤ 35	15 < d ≤ 25	0 < x ≤ 0.85
D	35 < d ≤ 55	30 < d ≤ 55	25 < d ≤ 35	0 < x ≤ 0.85
E	55 < d ≤ 80	50 < d ≤ 70	35 < d ≤ 50	0.85 < x ≤ 0.95
F	80 < d	70 < d	50 < d	1.00 < x

The key performance factors are summarised in **Table 5** below, while the results are presented in detail in **APPENDIX 3** at the end of this report.

Table 5	Key SIDRA	analysis re	esults (weekday	AM and PM	peak hours,	year 2023)
---------	-----------	-------------	-----------------	-----------	-------------	------------

Intersection	Approach	Peak Hour	Movement	Degree of Saturation (DOS)	Average Delay (s)	Level of Service (LOS)	95% Back of Queue (m)
			L	0.004	5.2	А	0.1
		Weekday AM	Т	-	-	-	-
	Niewsła		R	0.189	45.8	E	3.9
	North		L	0.003	6.8	А	0.1
		Weekday PM	Т	-	-	-	-
			R	0.066	47.6	E	1.3
			L	0.004	8.9	А	0.1
Valleyfield Road /		Weekday AM	Т	-	-	-	-
Arthur Highway	Cauth		R	-	-	-	-
	South		L	0.001	5.8	А	0.0
		Weekday PM	т	-	-	-	-
			R	-	-	-	-
			L	-	-	-	-
	Fact	Weekday AM	Т	0.427	0.1	А	0.0
	East		R	0.001	8.8	А	0.0
			L	0.268	7.0	А	0.0

Intersection	Approach	Peak Hour	Movement	Degree of Saturation (DOS)	Average Delay (s)	Level of Service (LOS)	95% Back of Queue (m)
		Weekday	т	0.268	0.1	А	0.0
		РМ	R	0.006	15.4	С	0.1
			L	0.005	7.2	А	0.0
		Weekday AM	т	0.092	0.1	A	0.0
	West		R	-	-	-	-
	West		L	0.012	7.1	A	0.0
		Weekday PM	Т	0.245	0.2	A	0.2
			R	0.245	8.5	А	0.2

The SIDRA results indicate that:

- Most of the movements on Arthur Highway (eastern and western approaches) operate at Level of Service A, with the only exception being the right-turn on the eastern approach, which operates at Level of Service C during the weekday PM peak hour;
- The right-turn movement on Valleyfield Road (northern approach) operates at Level of Service E during both peak hours;
- Overall, the intersection operates at low Degrees of Saturation, with generally very good Levels of Service being evident, and only minimal queue formation.

Regarding the Level of Service for the right-turn out of Valleyfield Road in **Table 5** above, the right-turn demand on the northern approach is very low (16 and 5 vehicles during the weekday AM and PM peak hours, respectively), as is also indicated by the relevant Degrees of Saturation and Queue Lengths. It is expected that the longer delays are due to gap acceptance not being modelled correctly, i.e., SIDRA uses gap acceptance values that are too high. Additionally, high degrees of platooning were observed in both directions on Arthur Highway whilst the traffic surveys were being undertaken, meaning that suitable gaps were available for right-turning traffic on the northern approach, which coincided with very little delay and no queueing being observed. The model was therefore accordingly calibrated with appropriate platooning parameters to better reflect queueing and delays based on the observed conditions, although it is noted that the delays are still conservatively higher than observed on site.

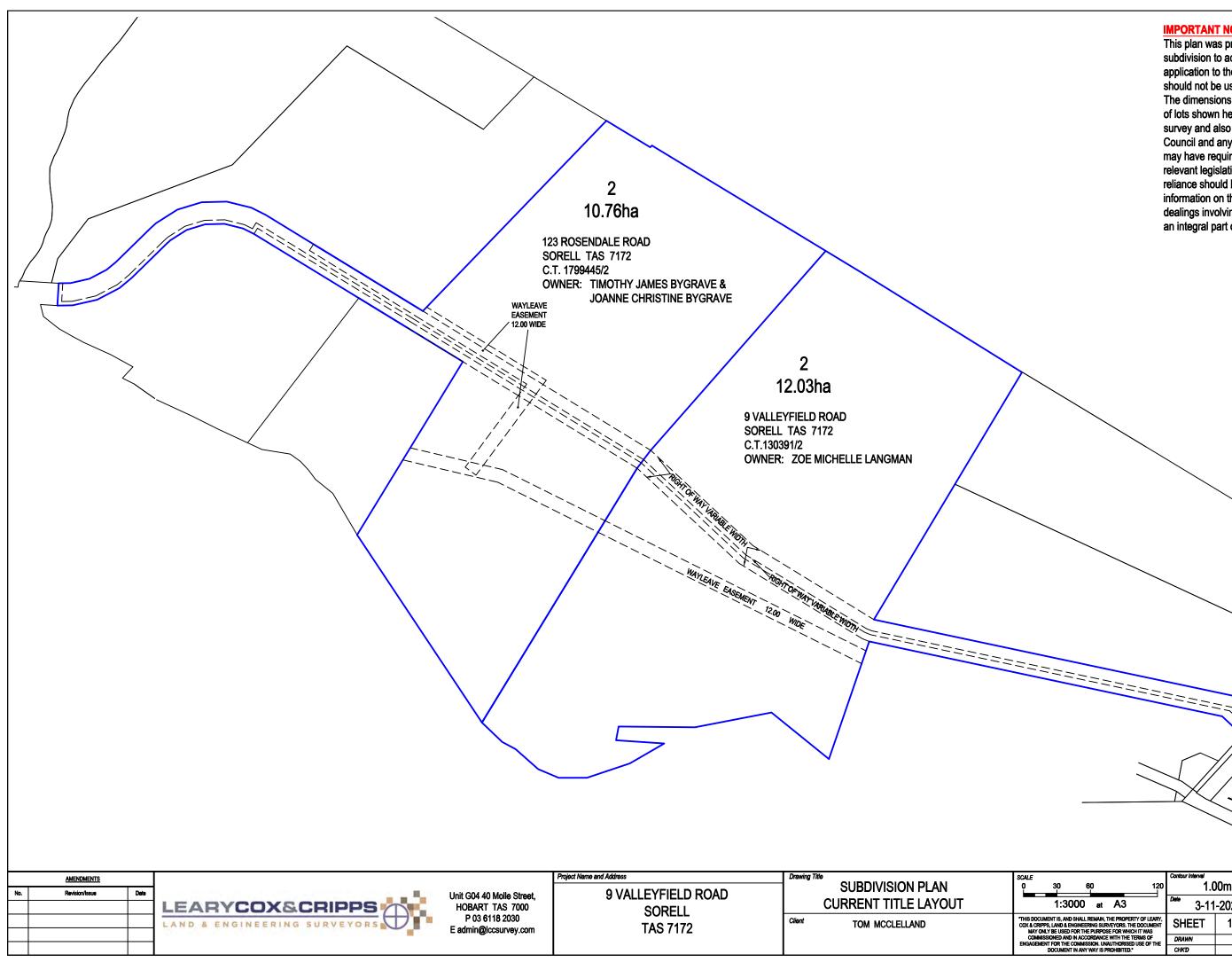
In addition to the above, the current performance of the intersection was analysed using the existing peak hour traffic volumes, and it was found that the performance of right-turning traffic on the northern approach is similar to the post-development conditions, as follows:

- Existing weekday AM peak hour northern approach right-turn performance results:
 - Degree of Saturation 0.098
 - Average Delay (s) 37.6
 - Level of Service E
 - 95% Back of Queue (m) 2.1
- Existing weekday PM peak hour northern approach right-turn performance results:
 - Degree of Saturation 0.020
 - Average Delay (s) 36.8
 - Level of Service E
 - 95% Back of Queue (m) 0.4

When comparing the existing and post-development conditions, only minor changes are observed in the performance measures.

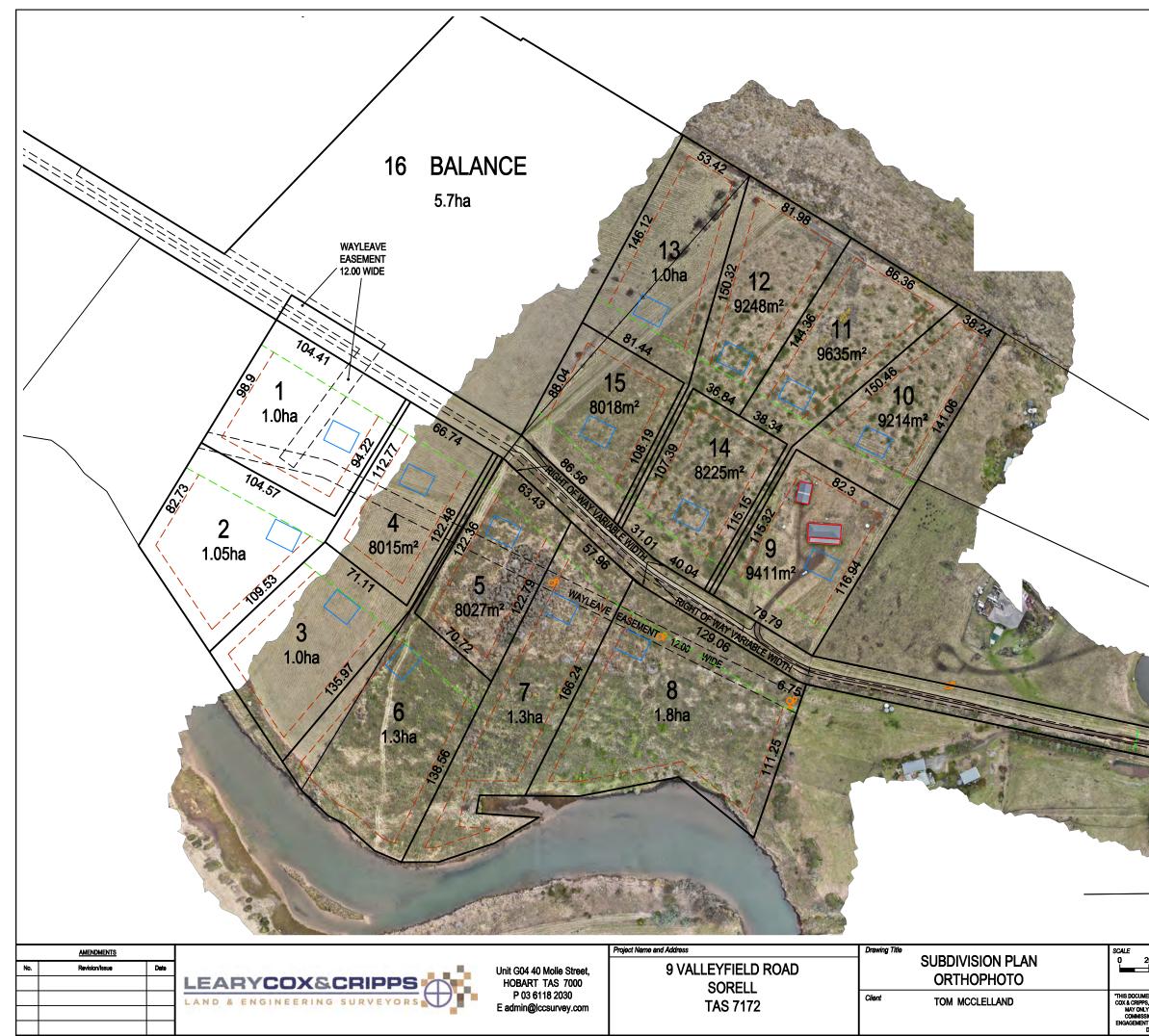
6 CONCLUSION

Based on the considerations outlined in this report, it is concluded that:


- It is proposed to create a continuous link between Valleyfield Road and Rosendale Road by connecting the eastern and western private access roads – a 20m wide road reserve will also be provided across the subject site;
- It is also proposed to seal the Valleyfield access road to a width of 6.5m between the subject site and Valleyfield Road, and to also seal the section of Valleyfield Road between the access road and Arthur Highway;
- The Tasmanian Subdivision Guidelines (October 2013) state that footpaths are required in rural roads. Accordingly, the provision of footpaths is not recommended, with an additional reason being the absence of a pedestrian footpath network in the area;
- The bushfire-prone areas code requires a minimum carriageway width of 7m for a through road. It is however recommended that the 6.5m carriageway width as per the Tasmanian Standard Drawings be maintained due to the very low traffic volumes expected on the access road;
- The existing surrounding road network will be able to adequately accommodate the expected additional traffic generated by the proposed subdivision; and
- We find there is no imperative to seal the section of Rosendale Road between Arthur Highway and the subject site.

As such there are no traffic engineering grounds to prevent the issue of a planning permit, subject to adoption of the above design requirements and recommendations that can be included within a suitable permit condition relating to the preparation of detailed design (civil) drawings.

APPENDIX 1 PROPOSED SUBDIVISION LAYOUT


IMPORTANT NOTE:

This plan was prepared as a proposed subdivision to accompany a subdivision application to the Sorell Council and should not be used for any other purpose. The dimensions. areas and total number of lots shown hereon are subject to field survey and also to the requirements of Council and any other authority which may have requirements under any relevant legislation. In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land. This note is an integral part of this plan.

Ν

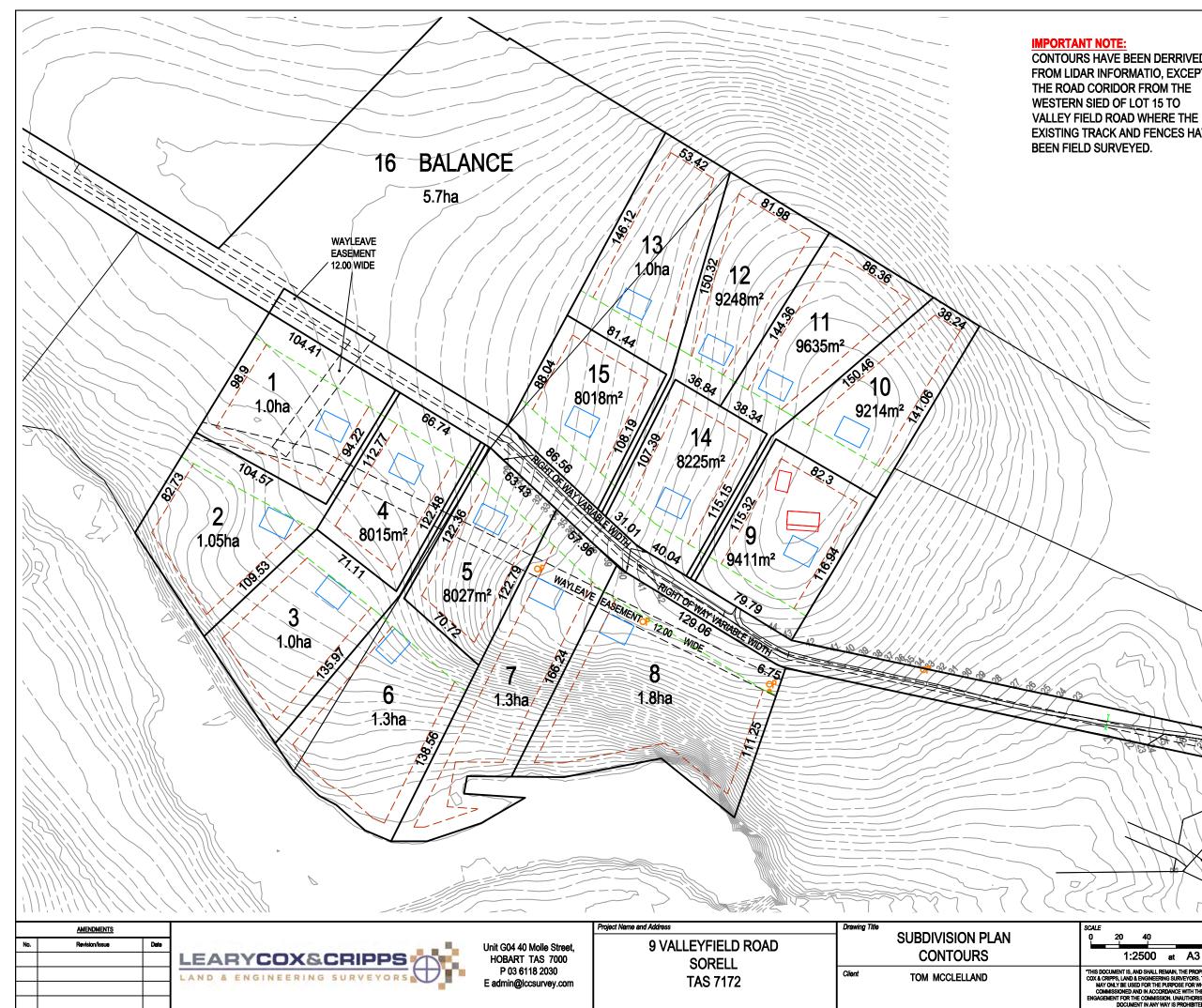
WALEY FIELD ROAD

30 60 120 1:3000 at A3	Deta)0m -2023	13620				
	<u>३</u> -11	-2023	0	1363020			
MENT IS, AND SHALL REMAIN, THE PROPERTY OF LEARY, PS, LAND & ENGINEERING SURVEYORS. THE DOCUMENT ILY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SHEET	1 of 4	Geocivil Ref AutoCAD Ref	1363020			
SSIONED AND IN ACCORDANCE WITH THE TERMS OF INT FOR THE COMMISSION, UNAUTHORISED USE OF THE	DRAWN	MC	DATUM Horz:	GDA2020			
DOCUMENT IN ANY WAY IS PROHIBITED.	СНКЮ		Vert:	AHD83			

IMPORTANT NOTE: THE 20m X 15m rectangles are shown for the purpose of satisfying 11.5.1.A1.i of the Tasmanian Planning Scheme and are not to define or restrict future building locations.

IMPORTANT NOTE:

This plan was prepared as a proposed subdivision to accompany a subdivision application to the Sorell Council and should not be used for any other purpose. The dimensions. areas and total number of lots shown hereon are subject to field survey and also to the requirements of Council and any other authority which may have requirements under any relevant legislation. In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land. This note is an integral part of this plan.



20m x 15m RECTANGLE

OR

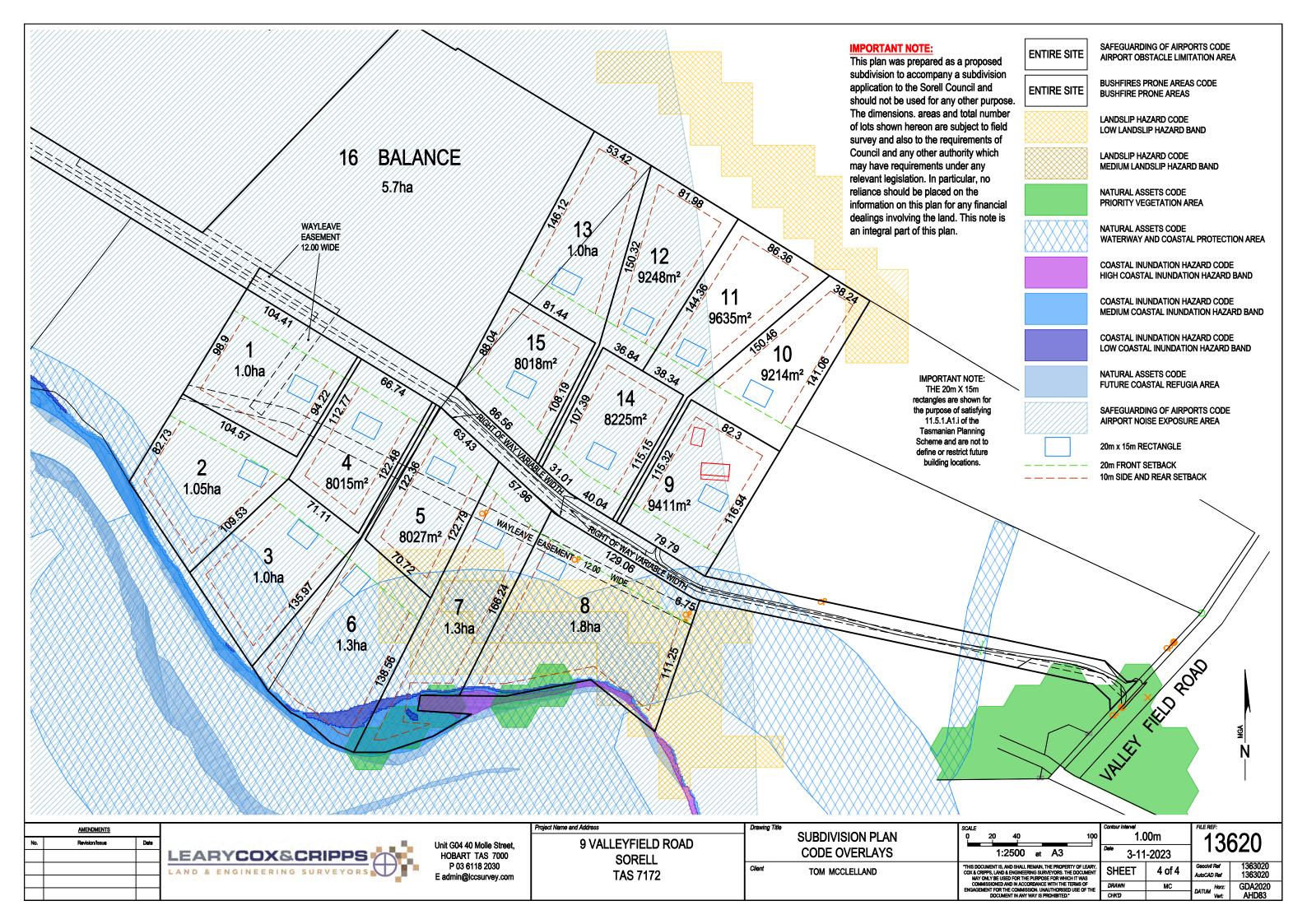
20m FRONT SETBACK 10m SIDE AND REAR SETBACK

20 40 100)0m	13620				
1:2500 at A3	^{⊅‱} 3-11	-2023					
MENT IS, AND SHALL REMAIN, THE PROPERTY OF LEARY, PS, LAND & ENGINEERING SURVEYORS. THE DOCUMENT ILY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SHEET	2 of 4	Geocivil Ref AutoCAD Ref	1363020 1363020			
SSIONED AND IN ACCORDANCE WITH THE TERMS OF INT FOR THE COMMISSION, UNAUTHORISED USE OF THE	DRAWN	MC	Horz:	GDA2020			
DOCUMENT IN ANY WAY IS PROHIBITED."	CHKD		DATUM Vert:	AHD83			

CONTOURS HAVE BEEN DERRIVED FROM LIDAR INFORMATIO, EXCEPT IN EXISTING TRACK AND FENCES HAVE

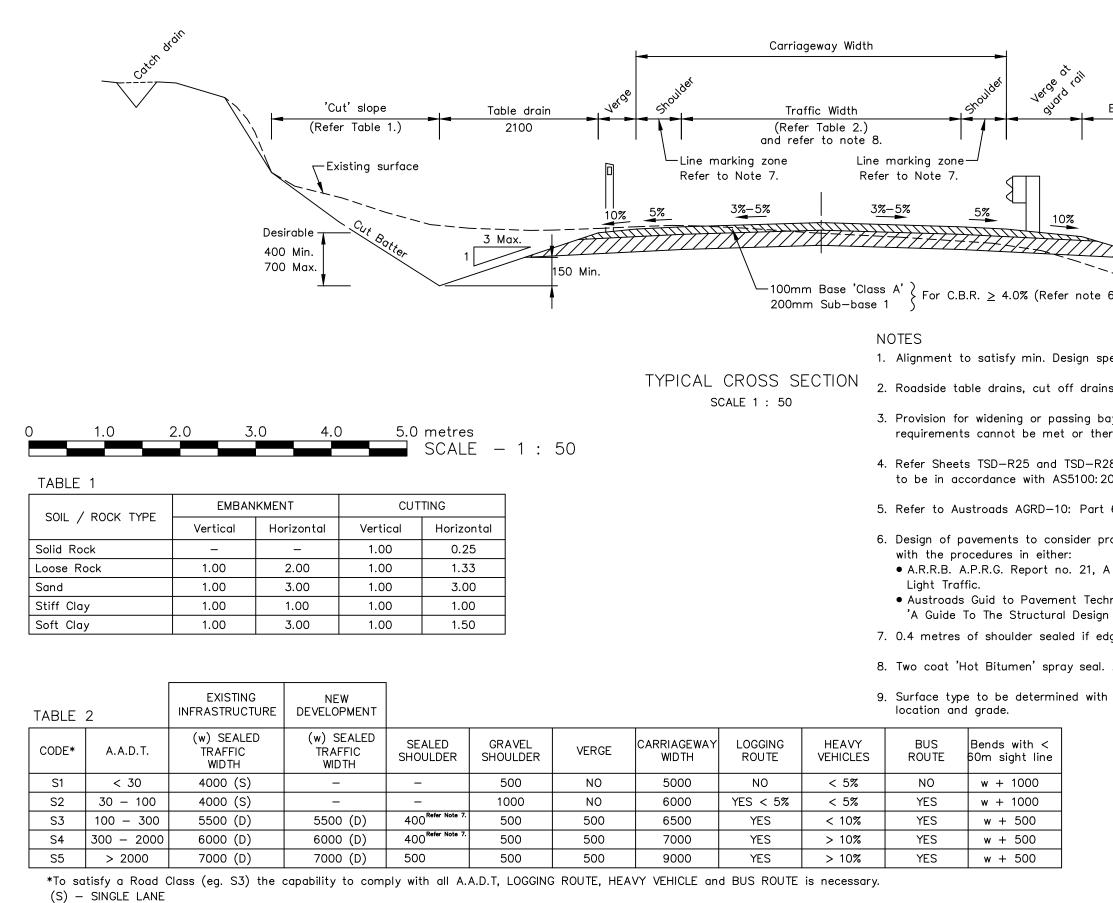
IMPORTANT NOTE:

This plan was prepared as a proposed subdivision to accompany a subdivision application to the Sorell Council and should not be used for any other purpose. The dimensions. areas and total number of lots shown hereon are subject to field survey and also to the requirements of Council and any other authority which may have requirements under any relevant legislation. In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land. This note is an integral part of this plan.


20m x 15m RECTANGLE

20m FRONT SETBACK 10m SIDE AND REAR SETBACK

IMPORTANT NOTE: THE 20m X 15m rectangles are shown for the purpose of satisfying 11.5.1.A1.i of the Tasmanian Planning Scheme and are not to define or restrict future building locations.


20 40 100 1:2500 at A3	Deta)0m -2023	FILE REF: 13	620
MENT IS, AND SHALL REMAIN, THE PROPERTY OF LEARY, PS, LAND & ENGINEERING SURVEYORS. THE DOCUMENT ILY BE USED FOR THE PURPOSE FOR WHICH IT WAS	SHEET	3 of 4	Geocivil Ref AutoCAD Ref	1363020 1363020
SSIONED AND IN ACCORDANCE WITH THE TERMS OF INT FOR THE COMMISSION, UNAUTHORISED USE OF THE	DRAWN	MC	Horz:	GDA2020
DOCUMENT IN ANY WAY IS PROHIBITED."	СНКЮ		DATUM Vert:	AHD83

WALLEY FIELD ROAD

APPENDIX 2 TASMANIAN STANDARD DRAWING TSD-R02-V3

(D) - DUAL LANE

©2020 SCALES: AS SHOWN This drawing and the information it contains is, and remains the prope (All scales are correct at A3) of the Local Government Association of Tasmania, and may only be used for the purpose of which it was intended. Reproduction of this drawing or its content in any format other than printed hard copies or PDF is strictly prohibited. It is the users responsibility to ensure this drawing is the current version XRef File: TSD-R02-v3.dwg The current version can be downloaded from: www.lgat.tas.gov.au

TAS Division PWEA INSTITUTE OF PUBLIC WORKS ENGINEERING AUSTRALASIA

ં
Embankment slope
(Refer Table 1.)
note 6.)
ign speed.
drains and culverts to be installed to suit topography.
ing bays may be required where sight distance or there are limited options for vehicles to pull off the road.
SD—R28 Guide Post. Safety barrier and terminal installation 100:2017
Part 6 Roadside Design, Safety and Barriers.
der project traffic loading, sub-grade strength and comply
21, A Guide to the Design of New Pavements for
t Technology 2019
Design Of Road Pavements' I if edge line is to be installed.
-
seal. Aggregate 10/7 or 14/7 optional.
d with consideration to, Vehicle types/turning movement,
STANDARD DRAWING
RURAL ROADS
SEALED
126 Macquarie Street, Hobart Tasmania 7000 186 Email: admin@lgat.tas.gov.au ISSUE DATE: 18-09-2020 TSD-R02-v3

APPENDIX 3 SIDRA RESULTS

V Site: 101 [Arthur / Valleyfield - Sc. 1 AM (Site Folder: Arthur Highway / Valleyfield Road)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Scenario 1: 2023 Existing AM Peak Hour Site Category: Base Year Give-Way (Two-Way)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demar Flow [Total H\ veh/h	/s F		Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Lot 294 Access													
1	L2	All MCs	2 0	.0 2	0.0	0.004	8.9	LOS A	0.0	0.1	0.63	0.65	0.63	57.6
Appro	bach		2 0	.0 2	0.0	0.004	8.9	LOS A	0.0	0.1	0.63	0.65	0.63	57.6
East:	Arthur	Hwy												
5	T1	All MCs	823 4	.9 823	4.9	0.427	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
Appro	bach		823 4	.9 823	4.9	0.427	0.1	NA	0.0	0.0	0.00	0.00	0.00	79.6
North	: Valle	yfield Rd												
7	L2	All MCs	1 0	.0 1	0.0	0.001	5.2	LOS A	0.0	0.0	0.26	0.48	0.26	59.0
9	R2	All MCs	11 10	.0 11	10.0	0.098	37.6	LOS E	0.3	2.1	0.88	0.94	0.88	42.9
Appro	bach		12 9	.1 12	9.1	0.098	34.7	LOS D	0.3	2.1	0.82	0.90	0.82	43.7
West	Arthu	r Hwy												
10	L2	All MCs	6 16	.7 6	16.7	0.004	7.3	LOS A	0.0	0.0	0.00	0.63	0.00	65.6
11	T1	All MCs	333 14	.2 333	14.2	0.092	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach		339 14	.3 339	14.3	0.092	0.2	NA	0.0	0.0	0.00	0.01	0.00	79.7
All Ve	hicles		1176 7	.6 1176	7.6	0.427	0.5	NA	0.3	2.1	0.01	0.01	0.01	79.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SUSTAINABLE TRANSPORT SURVEYS PTY LTD T/A SALT3 | Licence: NETWORK / 1PC | Processed: Monday, 4 December 2023 2:38:49 PM

V Site: 101 [Arthur / Valleyfield - Sc. 1 PM (Site Folder: Arthur Highway / Valleyfield Road)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Scenario 1: 2023 Existing PM Peak Hour Site Category: Base Year Give-Way (Two-Way)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Lot 2	94 Acces	s												
1	L2	All MCs	1	0.0	1	0.0	0.001	5.8	LOS A	0.0	0.0	0.47	0.50	0.47	60.0
Appro	bach		1	0.0	1	0.0	0.001	5.8	LOS A	0.0	0.0	0.47	0.50	0.47	60.0
East:	Arthur	Hwy													
4	L2	All MCs	1	0.0	1	0.0	0.268	7.0	LOS A	0.0	0.0	0.00	0.00	0.00	72.6
5	T1	All MCs	512	6.0	512	6.0	0.268	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach		513	6.0	513	6.0	0.268	0.1	NA	0.0	0.0	0.00	0.00	0.00	79.8
North	: Valle	yfield Rd													
9	R2	All MCs	2	0.0	2	0.0	0.020	36.8	LOS E	0.1	0.4	0.89	0.95	0.89	43.8
Appro	bach		2	0.0	2	0.0	0.020	36.8	LOS E	0.1	0.4	0.89	0.95	0.89	43.8
West	: Arthu	r Hwy													
10	L2	All MCs	15	14.3	15	14.3	0.009	7.2	LOS A	0.0	0.0	0.00	0.63	0.00	65.7
11	T1	All MCs	951	2.3	951	2.3	0.245	0.2	LOS A	0.0	0.2	0.00	0.00	0.00	79.9
12	R2	All MCs	2	0.0	2	0.0	0.245	8.5	LOS A	0.0	0.2	0.01	0.00	0.01	68.2
Appro	bach		967	2.5	967	2.5	0.245	0.3	NA	0.0	0.2	0.00	0.01	0.00	79.7
All Ve	hicles		1483	3.7	1483	3.7	0.268	0.3	NA	0.1	0.4	0.00	0.01	0.00	79.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SUSTAINABLE TRANSPORT SURVEYS PTY LTD T/A SALT3 | Licence: NETWORK / 1PC | Processed: Monday, 4 December 2023 2:38:50 PM

V Site: 101 [Arthur / Valleyfield - Sc. 2 AM (Site Folder: Arthur Highway / Valleyfield Road)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Scenario 2: 2023 Development Traffic Added AM Peak Hour Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Lot 294 Access														
1	L2	All MCs	2	0.0	2	0.0	0.004	8.9	LOS A	0.0	0.1	0.63	0.65	0.63	57.6
Appro	bach		2	0.0	2	0.0	0.004	8.9	LOS A	0.0	0.1	0.63	0.65	0.63	57.6
East:	Arthur	Hwy													
5	T1	All MCs	823	4.9	823	4.9	0.427	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
6	R2	All MCs	1	0.0	1	0.0	0.001	8.8	LOS A	0.0	0.0	0.33	0.59	0.33	58.2
Appro	bach		824	4.9	824	4.9	0.427	0.2	NA	0.0	0.0	0.00	0.00	0.00	79.6
North	: Valle	yfield Rd													
7	L2	All MCs	4	0.0	4	0.0	0.004	5.2	LOS A	0.0	0.1	0.26	0.49	0.26	59.0
9	R2	All MCs	17	6.3	17	6.3	0.189	45.8	LOS E	0.5	3.9	0.90	0.96	0.94	39.8
Appro	bach		21	5.0	21	5.0	0.189	37.7	LOS E	0.5	3.9	0.77	0.87	0.81	41.8
West:	Arthu	r Hwy													
10	L2	All MCs	8	12.5	8	12.5	0.005	7.2	LOS A	0.0	0.0	0.00	0.63	0.00	65.8
11	T1	All MCs	333	14.2	333	14.2	0.092	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.9
Appro	bach		341	14.2	341	14.2	0.092	0.3	NA	0.0	0.0	0.00	0.02	0.00	79.7
All Ve	hicles		1188	7.5	1188	7.5	0.427	0.9	NA	0.5	3.9	0.02	0.02	0.02	78.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SUSTAINABLE TRANSPORT SURVEYS PTY LTD T/A SALT3 | Licence: NETWORK / 1PC | Processed: Monday, 4 December 2023 4:52:42 PM

V Site: 101 [Arthur / Valleyfield - Sc. 2 PM (Site Folder: Arthur Highway / Valleyfield Road)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Scenario 2: 2023 Development Traffic Added PM Peak Hour Site Category: Future Conditions 1 Give-Way (Two-Way)

Vehi	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Lot 2	94 Acces	s												
1	L2	All MCs	1	0.0	1	0.0	0.001	5.8	LOS A	0.0	0.0	0.47	0.50	0.47	60.0
Appro	bach		1	0.0	1	0.0	0.001	5.8	LOS A	0.0	0.0	0.47	0.50	0.47	60.0
East:	Arthur	Hwy													
4	L2	All MCs	1	0.0	1	0.0	0.268	7.0	LOS A	0.0	0.0	0.00	0.00	0.00	72.6
5	T1	All MCs	512	6.0	512	6.0	0.268	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
6	R2	All MCs	2	0.0	2	0.0	0.006	15.4	LOS C	0.0	0.1	0.68	0.77	0.68	51.4
Appro	bach		515	5.9	515	5.9	0.268	0.1	NA	0.0	0.1	0.00	0.00	0.00	79.7
North	: Valle	yfield Rd													
7	L2	All MCs	2	0.0	2	0.0	0.003	6.8	LOS A	0.0	0.1	0.45	0.55	0.45	57.8
9	R2	All MCs	5	0.0	5	0.0	0.066	47.6	LOS E	0.2	1.3	0.91	0.96	0.91	39.4
Appro	bach		7	0.0	7	0.0	0.066	35.9	LOS E	0.2	1.3	0.78	0.84	0.78	42.3
West	: Arthu	r Hwy													
10	L2	All MCs	20	10.5	20	10.5	0.012	7.1	LOS A	0.0	0.0	0.00	0.63	0.00	65.9
11	T1	All MCs	951	2.3	951	2.3	0.245	0.2	LOS A	0.0	0.2	0.00	0.00	0.00	79.9
12	R2	All MCs	2	0.0	2	0.0	0.245	8.5	LOS A	0.0	0.2	0.01	0.00	0.01	68.2
Appro	bach		973	2.5	973	2.5	0.245	0.4	NA	0.0	0.2	0.00	0.02	0.00	79.6
All Ve	hicles		1496	3.7	1496	3.7	0.268	0.5	NA	0.2	1.3	0.01	0.02	0.01	79.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

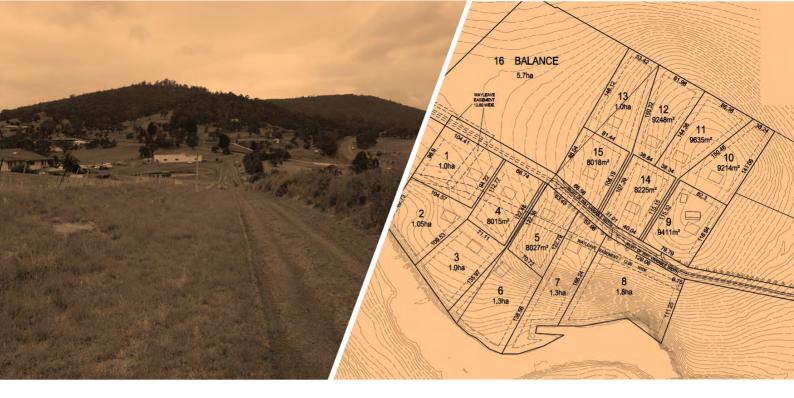
Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

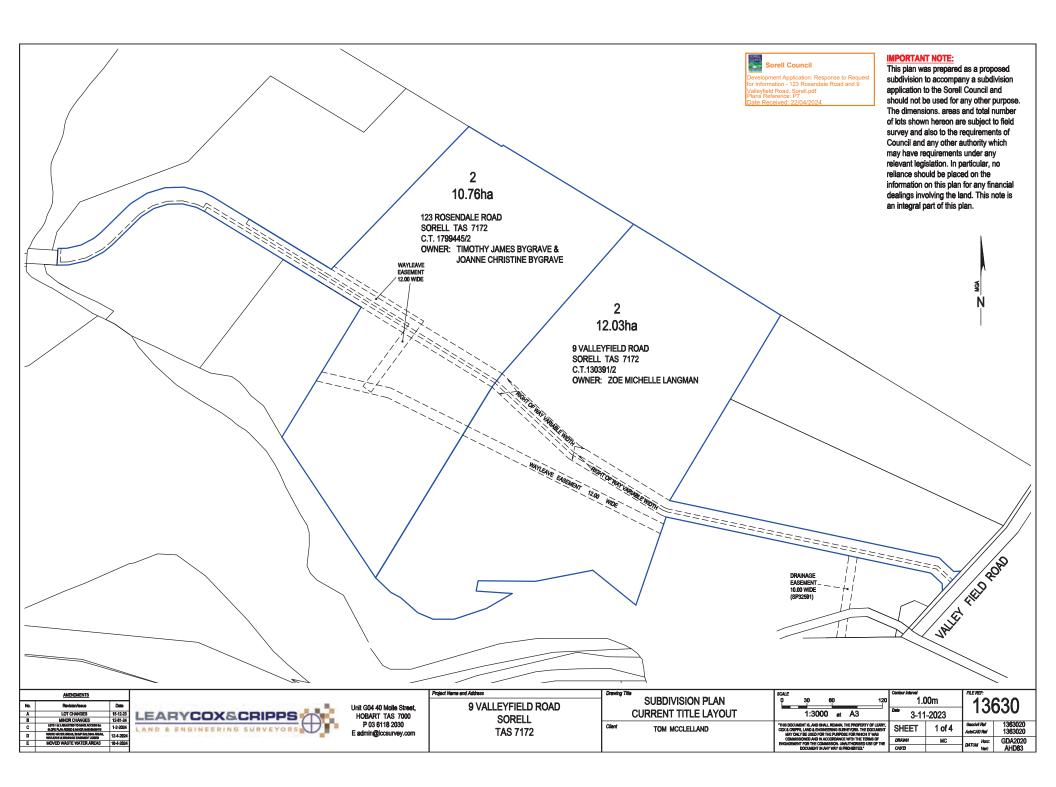

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

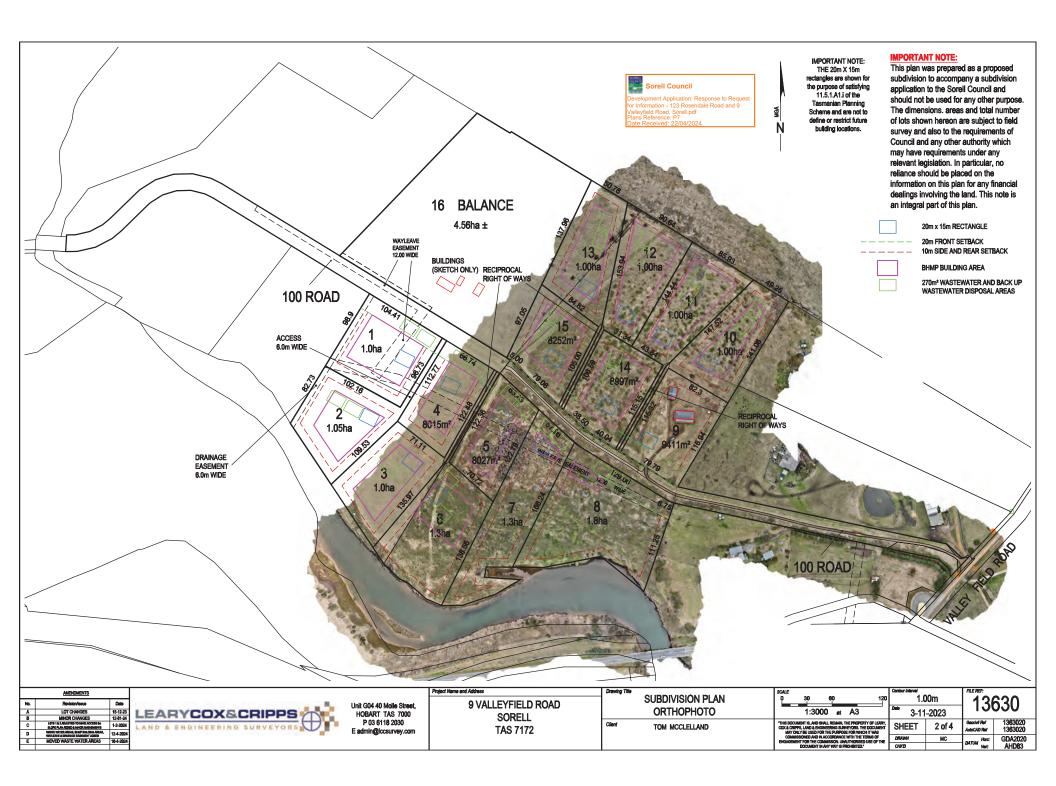
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

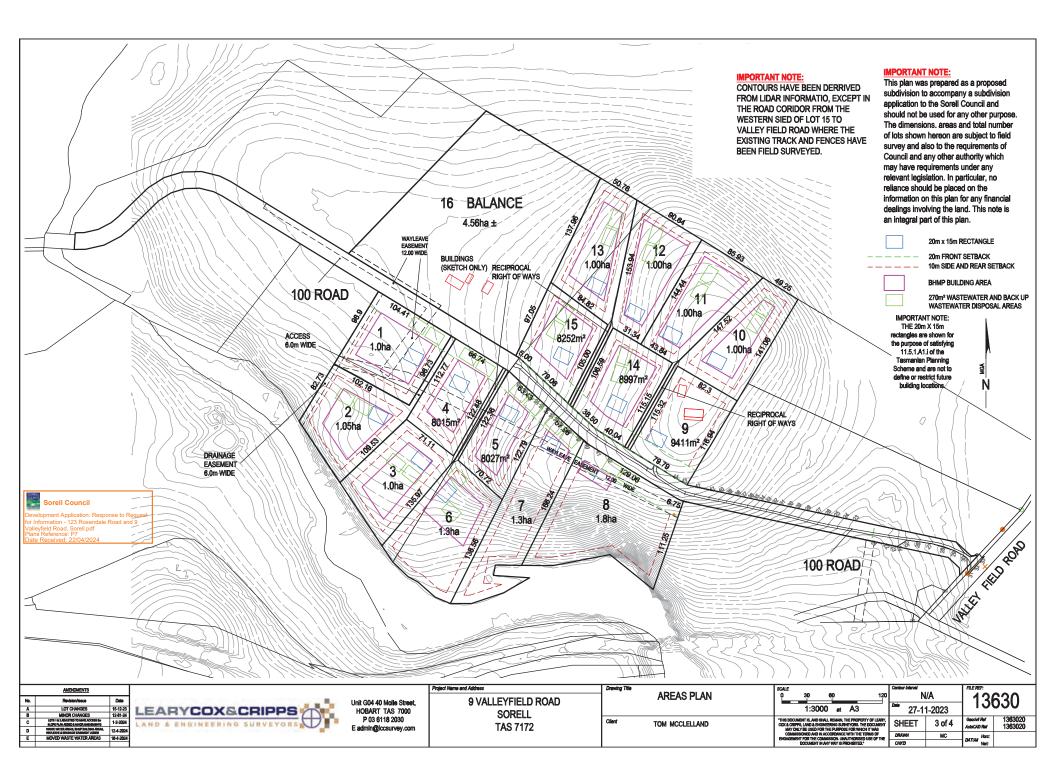
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

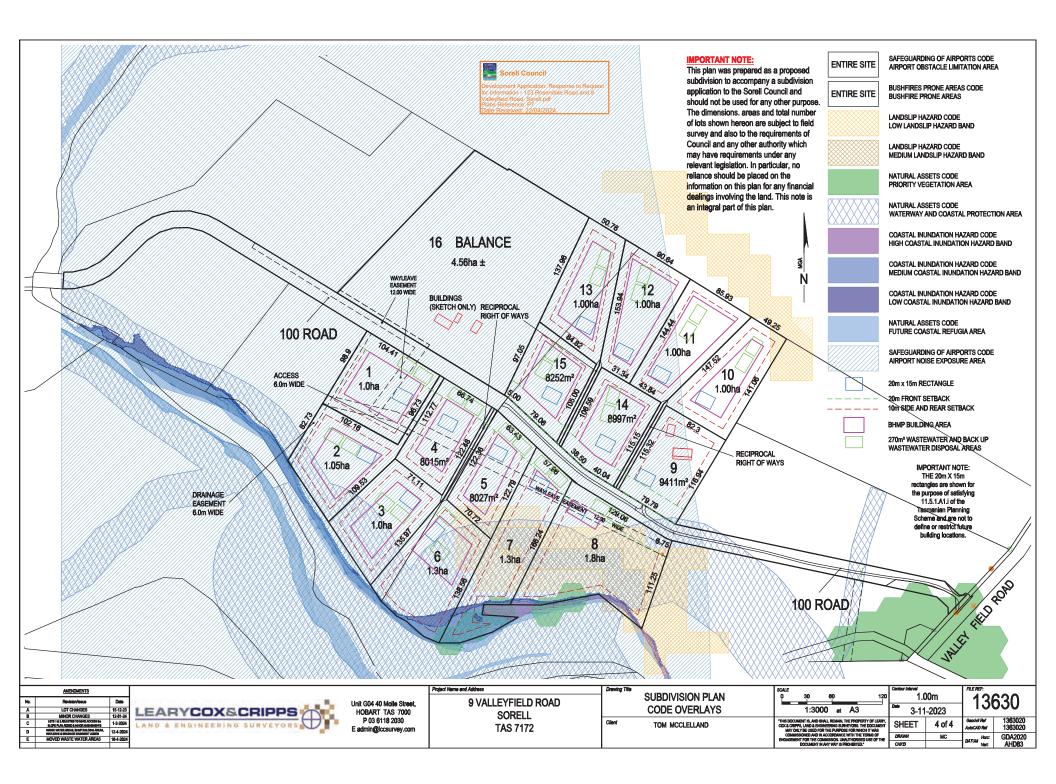
SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

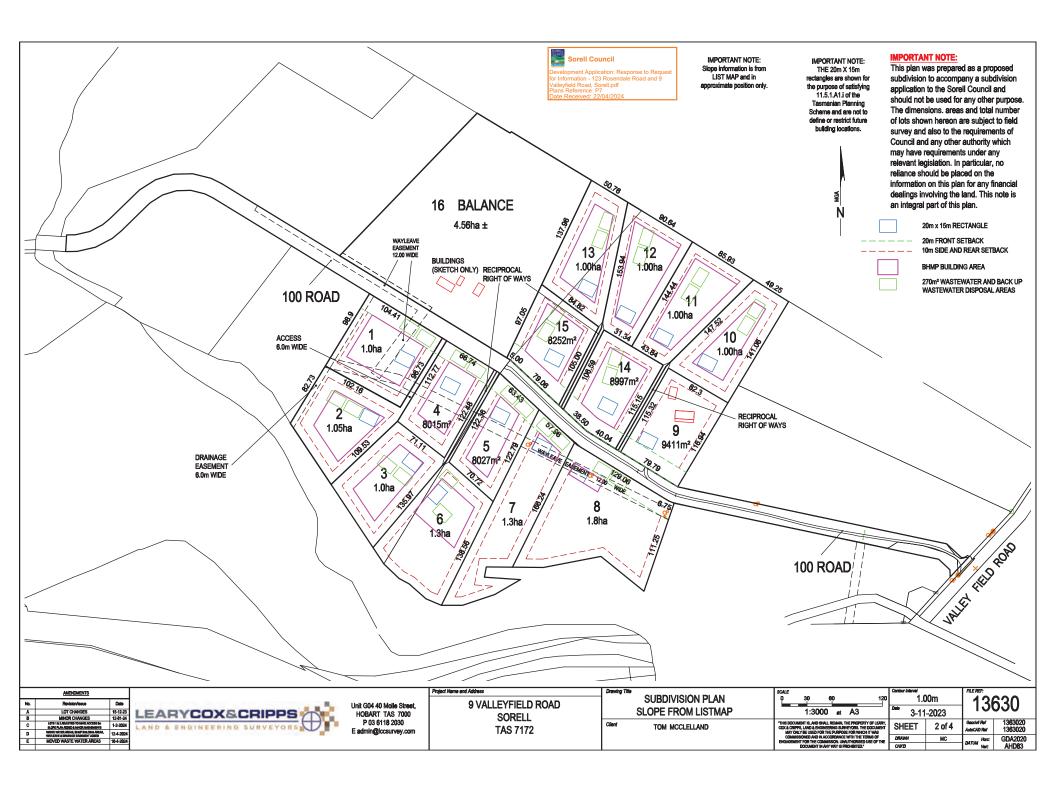
Organisation: SUSTAINABLE TRANSPORT SURVEYS PTY LTD T/A SALT3 | Licence: NETWORK / 1PC | Processed: Monday, 4 December 2023 4:52:43 PM

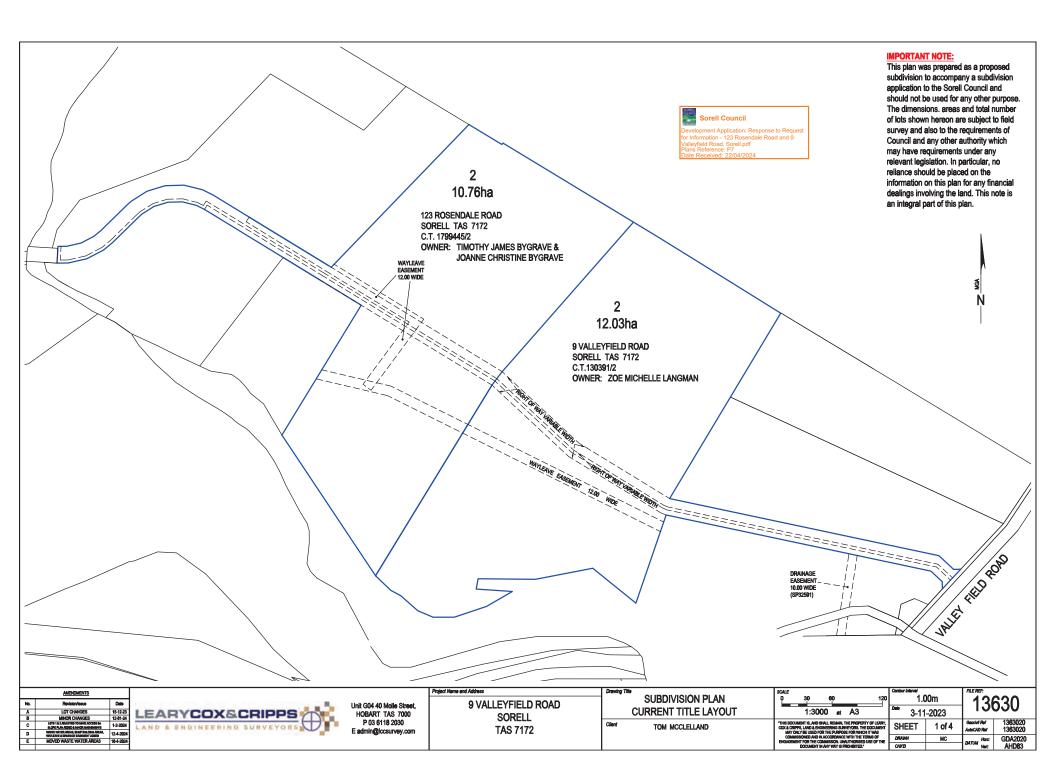


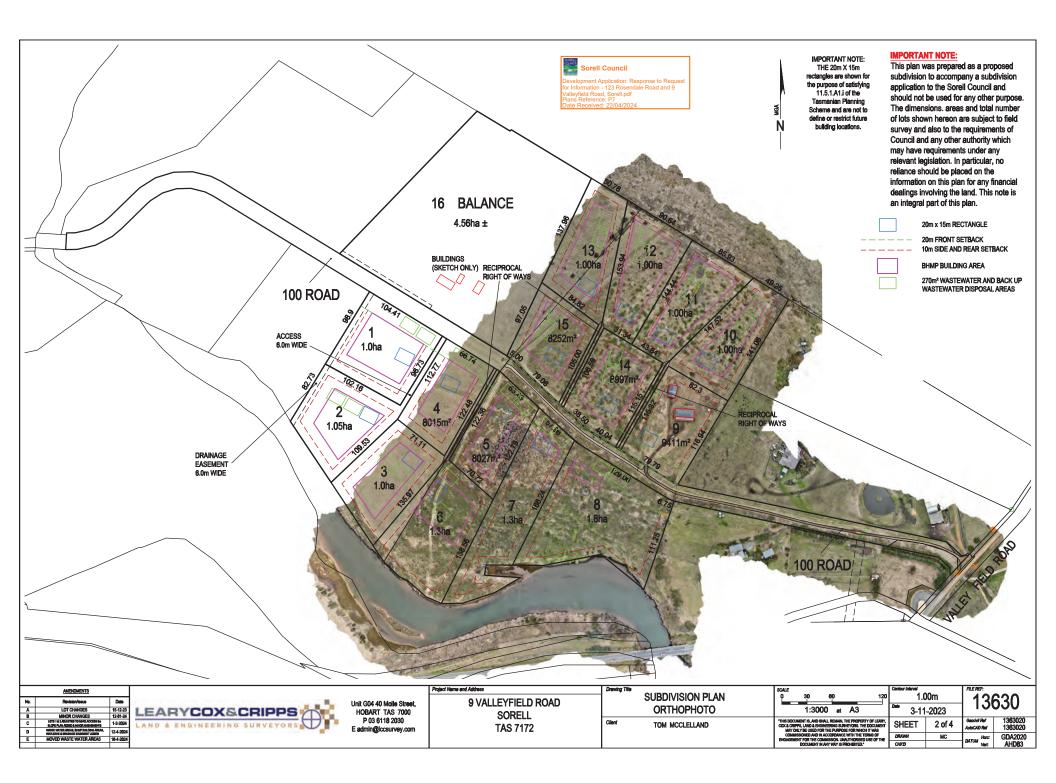

Service. Approachability. Loyalty. Transparency.

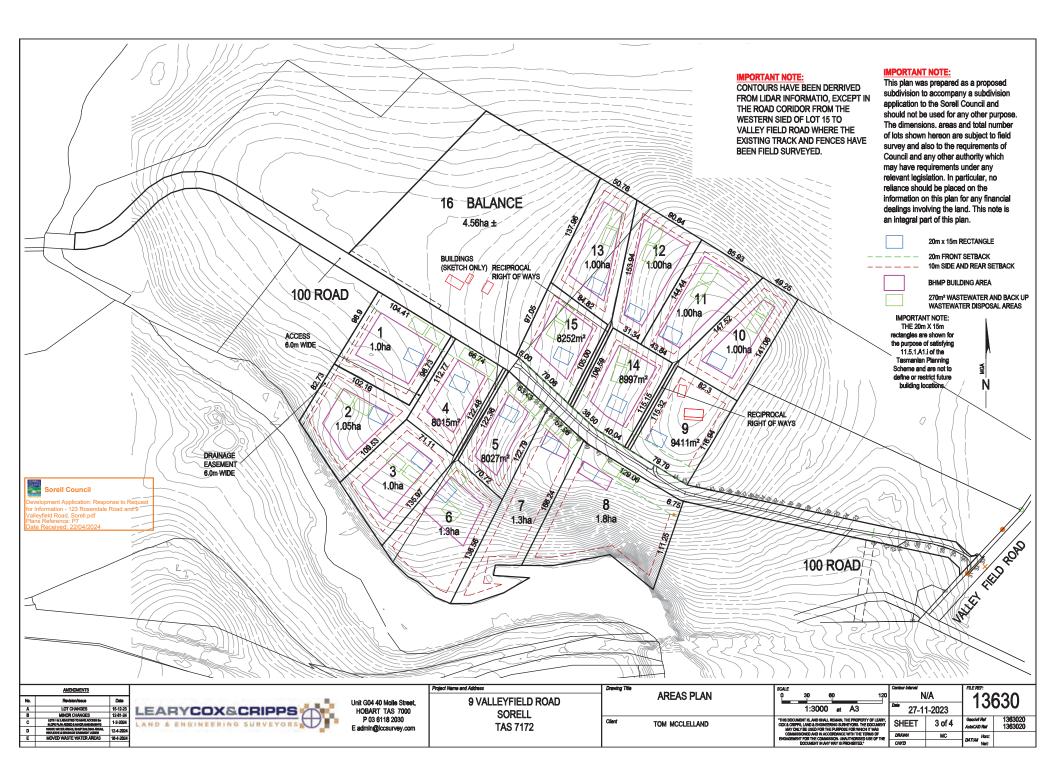

MELBOURNE

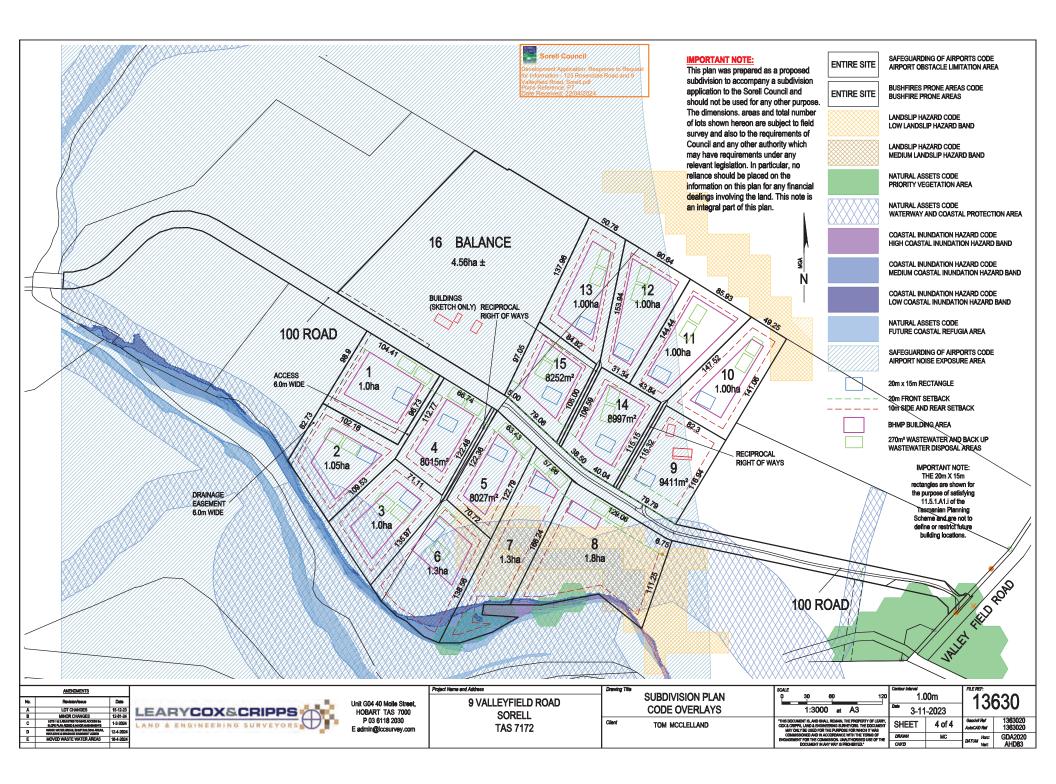

Level 3, 51 Queen St Melbourne VIC 3000 T: +61 3 9020 4225 SYDNEY Level 6, 201 Kent St Sydney NSW 2000 T: +61 2 9068 7995 HOBART Level 4, 116 Bathurst St Hobart TAS 7000 T: +61 400 535 634 CANBERRA Level 3, 33-35 Ainslie PI Canberra ACT 2601 T: +61 2 9068 7995 ADELAIDE Level 21, 25 Grenfell St Adelaide SA 5000 T: +61 8 8484 2331 www.salt3.com.au

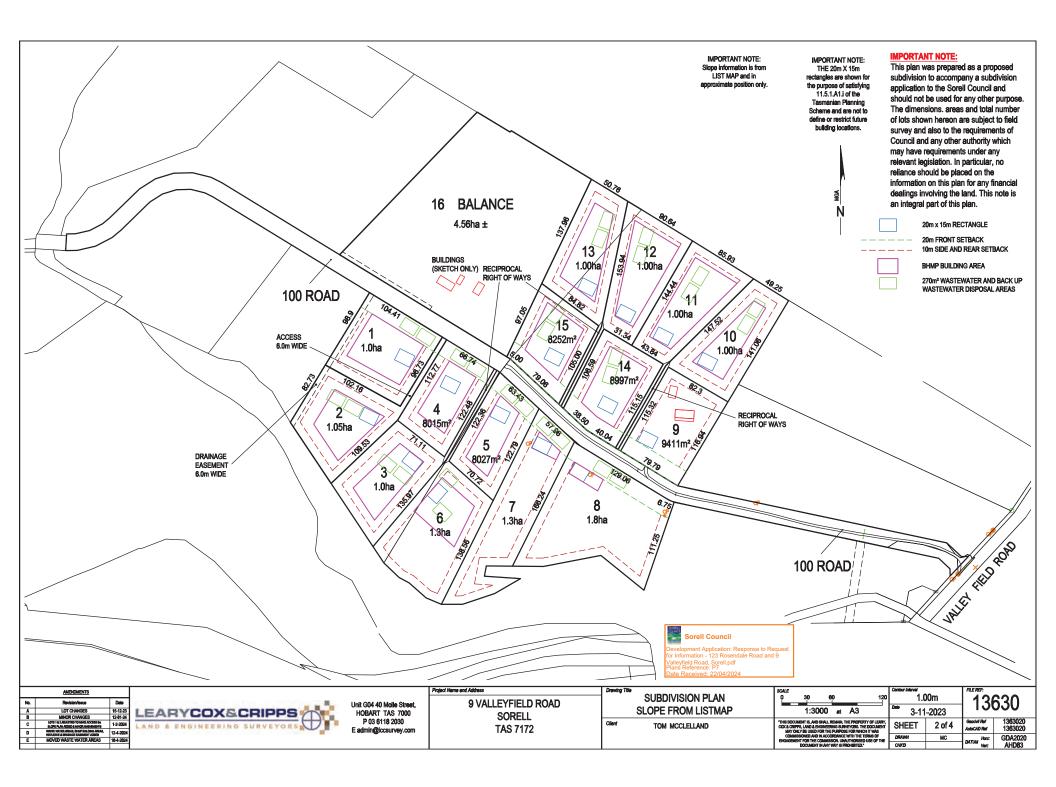












GENERAL NOTES

1. BEFORE COMMENCING ANY EARTHWORKS YOU MUST CONTACT DIAL BEFORE YOU DIG 1100 REGARDING THE LOCATION OF UNDERGROUND ASSETS ON SITE

2. PRIOR TO COMMENCING WORKS, THE CONTRACTOR MUST SUBMIT AN APPLICATION FOR (WS02A) AND RECEIVE A PERMIT TO CONSTRUCT NEW TASWATER INFRASTRUCTURE (WS02P).

3. PIPE DEPTHS ARE SHOWN TO INVERT ONLY. ALLOW EXTRA 100MM DEPTH FOR BEDDING

4. ALL CONCRETE IS GRADE N25 U.N.O.

5. CONNECTIONS TO EXISTING TASWATER AND COUNCIL SERVICES TO BE TO TASWATER AND COUNCIL STANDARDS AND APPROVAL

6. ALL AREAS OF FILL OR DISTURBANCE TO BE REINSTATED WITH MINIMUM OF 100MM OF APPROVED TOPSOIL & SEEDED WITH APPROVED SEED MIX

7. MARKERS TO BE PLACED FOR TELSTRA CONDUIT LOCATION UNDER ACCESSES

COMPACTION OF FILL

FILL TO COMPRISE OF GRANULAR MATERIAL COMPACTED IN 300MM MAXIMUM LAYERS WITH COMPACTION EQUIPMENT TO ACHIEVE A FINAL COMPACTION OF 90% MODIFIED MAXIMUM COMPACTION. TOPSOIL TO BE STRIPPED AND SURFACE BENCHED IF CROSS SLOPE IS 10% OR MORE PRIOR TO PLACING FILL.

SOIL AND WATER MANAGEMENT

SOIL & WATER MANAGEMENT IS TO COMPLY WITH BEST PRACTICE TO PREVENT ANY TRANSFER OF SOIL MATERIAL OUTSIDE OF THE AREA SPECIFICALLY NECESSARILY DISTURBED FOR CONSTRUCTION OF THE SUBDIVISION, PARTICULAR ATTENTION SHALL BE PAID TO ENSURE THAT NO SOIL MATERIAL IS TRACKED ONTO ROADS & FOOTPATHS OR TO ENTER COUNCILS STORMWATER SYSTEM. ALL ASPECTS & PROTECTION MEASURES IN CONNECTION WITH SOIL & WATER MANAGEMENT ARE TO COMPLY WITH THE REQUIREMENTS COUNCILS DEVELOPMENT ENGINEER. THE CONTRACTOR SHALL SUBMIT A SOIL & WATER MANAGEMENT PLAN PRIOR TO STARTING WORK ON SITE.

REFER SOIL AND WATER MANAGEMENT CODE OF PRACTICE FOR HOBART AND REGIONAL COUNCILS.

ROAD AND STORMWATER NOTES

1. ALL WORKS TO BE UNDERTAKEN IN ACCORDANCE WITH THE TASMANIAN COUNCILS STANDARDS FOR SUBDIVISIONS AND IPWEA AND AWA STANDARD DRAWINGS WHERE APPLICABLE.

2. ALL SERVICES WITHIN THE ROAD RESERVATION TO BE LOCATED IN ACCORDANCE WITH TSD -G02

3. ALL PIPEWORK UNDER ROADS AND DRIVEWAYS TO BE BACKFILLED WITH FCR.

4. ALL SIDE ENTRY PITS TO BE CONSTRUCTED IN ACCORDANCE WITH TSD-SW09 OR TSD-SW10 UNLESS OTHERWISE APPROVED BY THE MUNICIPAL ENGINEER.

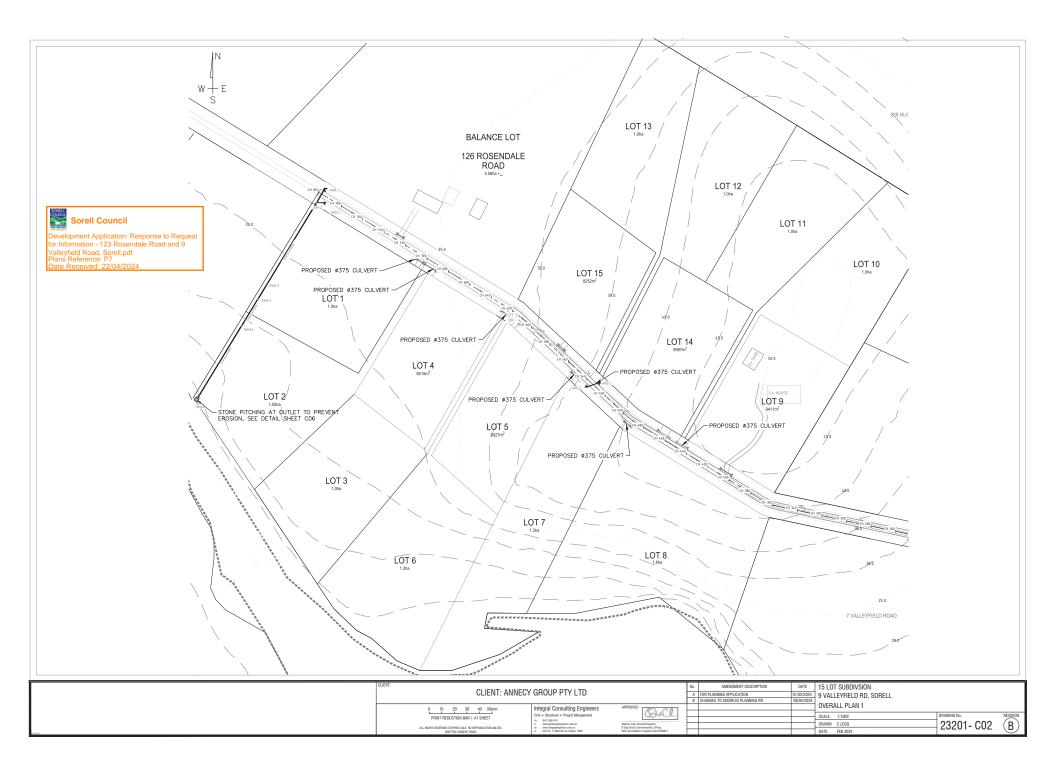
DRAWING INDEX

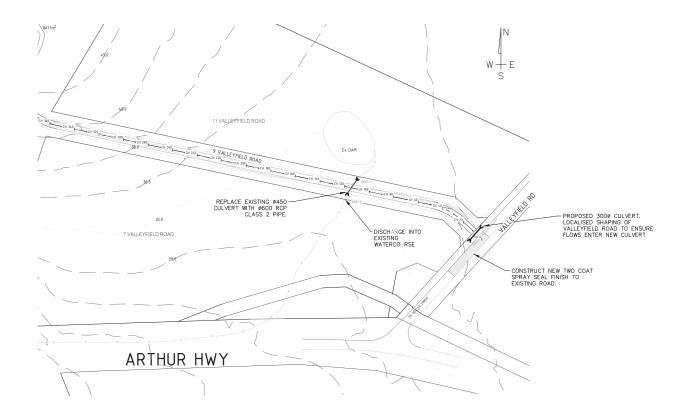
Sorell Council

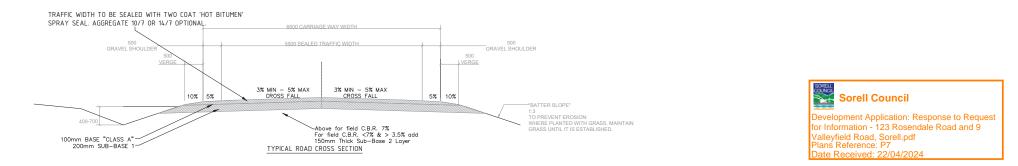
Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 ate Received: 22/04/2024

CO1 DRAWING INDEX & NOTES CO2 OVERALL PLAN 1 CO3 OVERALL PLAN 2 CO4 STORMWATER PIPE 1 2 & 3 LONGSECTIONS CO5 STORMWATER PIPE 4 LONGSECTIONS CO6 OUTLET EROSION CONTROL DETAIL C07 ROAD LONGSECTION CH0-395 C08 ROAD LONGSECTION CH390-801 CO9 ROAD CROSS SECTIONS CH0-130 C10 ROAD CROSS SECTIONS CH140-260 C11 ROAD CROSS SECTIONS CH270-360 C12 ROAD CROSS SECTIONS CH370-500 C13 ROAD CROSS SECTIONS CH500-640 C14 ROAD CROSS SECTIONS CH650-770 C15 ROAD CROSS SECTIONS CH780-801 C16 ROAD LONGSECTIONS CH 0-801

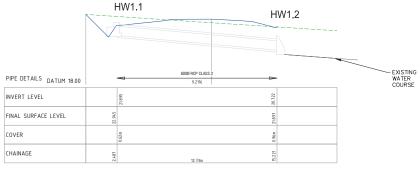
HO1 STORMWATER RUNOFF ASSESSMENT - EXISTING SITE CONDITIONS H02 STORMWATER RUNOFF ASSESSMENT -POST DEVELOPMENT CONDITIONS


H03 STORMWATER PIPE 1, 2 & 3 LONGSECTIONS H04 STORMWATER PIPE 4 LONGSECTIONS


H05 ROAD DRAINAGE HIGH SIDE SWALE LONGSECTION CH0.0-395 HO6 ROAD DRAINAGE HIGH SIDE SWALE LONGSECTION CH390-797


H07 ROAD DRAINAGE LOW SIDE SWALE LONGSECTION CH535-791

H08 ONSITE WASTE WATER & STORMWATER DISPOSAL PLAN


CLIENT: ANNEC	Y GROUP PTY LTD		AMENDMENT DESCRIPTION R PLANNING APPLICATION ANGES TO ADDRESS PLANNING RFI	09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
 0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHT RESERVES TITHOR CALL IN DIPROLOTION LESS WINTEN COLLER JOINT	Integral Consulting Engineers Civil - Structural - Project Management - Structural - Project Management - Structural - Structural - Structural - Structural - Structural - Structural - Structural - Structural - S	APPROVED: Staphes Coli, Principal Engineer 8 Eng (Doli & Environmental, OfEng 1057 Accountables: Engineer Colis CE300 1			DRAWING INDEX & NOTES SCALE 1:1000 DRAWN ELEGG DATE FEB 2024	23201- C01	B

RUTE: 1. Ø THE SRAVNE IS PROTECTED DY COPYRGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTLE CONSIST OF INTEGRA, CORSA, THE REMARKERS.	CLIENT: ANNEC	CY GROUP PTY LTD			AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	DATE 01/02/2024 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2 THE LAYOU OF RADES AND EXEMPLES ARE SUBJECT TO DANARE WITHOUT WOTEL 1. UN BOOMMENT SAN SUBJECT TO DANARE MIT AND THAT TO DANARE WITHOUT DANARES FOR CHARACTER BOWLINGS FOR CHARACTER 4. TAS INTWINES AND TLISTING SUBVICES ARE NOT SHOWN, METER TO TAS INTWINES AND TLISTING DANAMES FOR CHARACTER 5. YOU NOT CONTACT DIAL BEFORE YOU DO TO DECK THE LOCATIONS OF ANY STIE SERVICES BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL BRITS RESERVES STIFFARM CALE NO REPROJUCTION MALESS WARTER CORRECT GARN	Integral Consulting Engineers Civil => Structural => Project Management == 0417.650.474 == bangingingangingeneses.com.sa == www.integrafigneers.com.sa == unit 9,11 Microsoft Abuda 7000	APPROVED: Supher Coli, Principal Englisher B fog (Trid & Emmissionerial), CPUig 1977 Accountable - Englisher CPUIg 1977 A	_			OVERALL PLAN 2 SCALE 1:1000 DRAWN E.LEGG DATE FEB 2024	DRAWING No. 23201- C03	B

STORMWATER PIPE 1 LONGSECTION

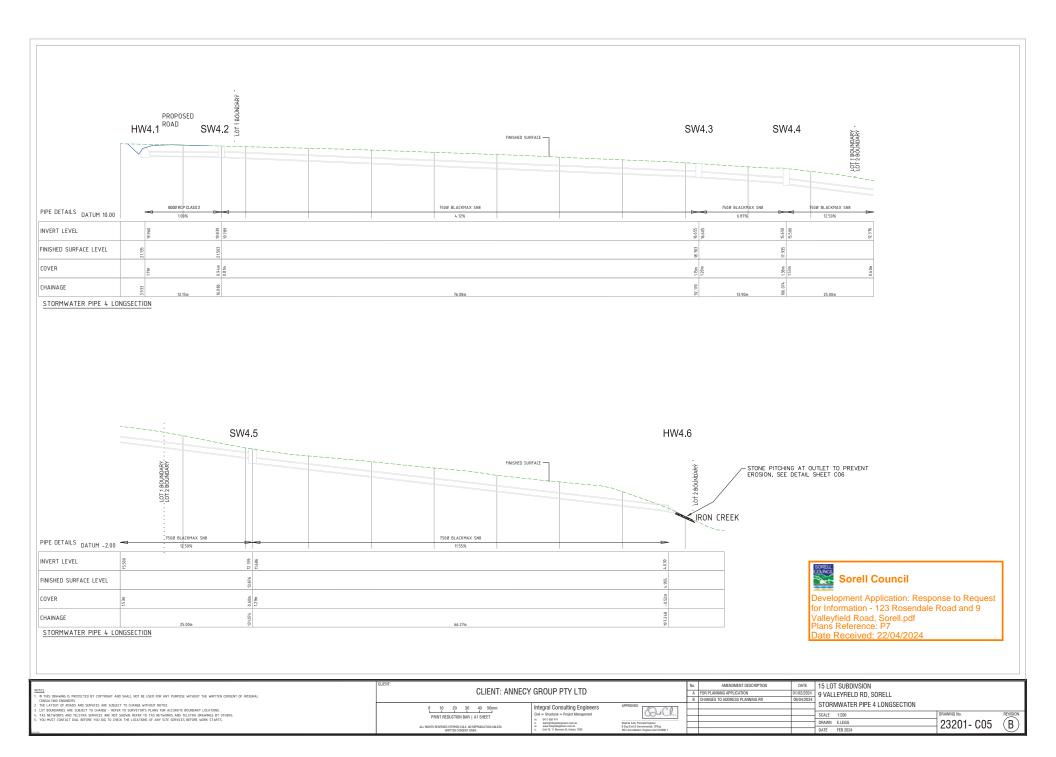
HW2.1

HW2.2

	K	X				Y
PIPE DETAILS DATUM 32.00		•		CP CLASS 2		-
INVERT LEVEL		35.794			34.480	
FINAL SURFACE LEVEL	36.719				35.405	
COVER		0.04m			0.55 m	
CHAINAGE	0.926		10).52m	11450	

STORMWATER PIPE 2 LONGSECTION

HW3.1


SW4.2

STORMWATER PIPE 3 LONGSECTION

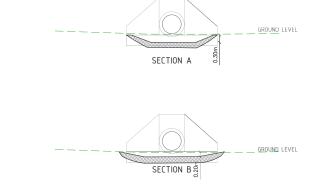
Sorell Council

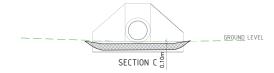
Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

NITE 1 P NG BRANK & PROTECTED & COVERAT AND SHALL NOT BE USED FOR ANY PARPOSE WITHOUT THE WRITTEN CONSINT OF INTERNAL CORVEL THIS INSERTES.	CLIENT: ANNECY	GROUP PTY LTD			AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	01/02/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BOMARIES ARE SUBJECT TO CHANGE REFET TO SUMPRY OF SPLANS FOR ACCURATE BOUNDARY LOCATIONS.	0 10 20 30 40 50mm	Integral Consulting Engineers	APPROVED:			_	STORMWATER PIPE 1, 2 & 3 LONGSECTION		
4. TAS INTHOMSK AND TELSTRA SERVICES ARE NOT SHININK REFER TO TAS INTHOMSKS AND TELSTRA DRAWINGS BY OTHERS. 5. YOU HUST CONTACT DUAL REFORE YOU DO TO LOVEN THE LOVEN STATEST ESPECISE DEPOSITE WORK STATES.	PRINT REDUCTION BAR A1 SHEET	Civil	COULE	-			SCALE 1:200	DRAWING No.	REVISION
3. TOO HUST CONTACT LINE BEFORE TOO LIETO CHECK THE LOCATIONS OF ANT SHE SERVICES BEFORE WORK STARTS.	ALL RIGHTS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS	 bam@integralengineers.com.au www.integralengineers.com.au 	Stephen Cole, Principal Engineer 8 Eng (Coll & Environmental), CPEng WST Accreditation: Engineer Coll CC5000 T				DRAWN E.LEGG	23201- C04	(B)
10.00	WRITTEN CONSENT OVEN	a: Unit 10, 11 Monison SI, Hobart, 7000	WST Accreditation: Engineer Civil CC5000 T				DATE FEB 2024	LOLOI OUI	9

EROSION MINIMISATION NOTES:

WORK TO CONSTRUCT THE STONE PITCHING AT THE OUTLET TO BE DONE WITH THE FOLLOWING LIMITATIONS:


1. STONE PITCHING TO BE CONSTRUCTED PRIOR TO ROADSIDE SWALE DRAINS BEING CONNECTED TO STORMWATER PIPE.

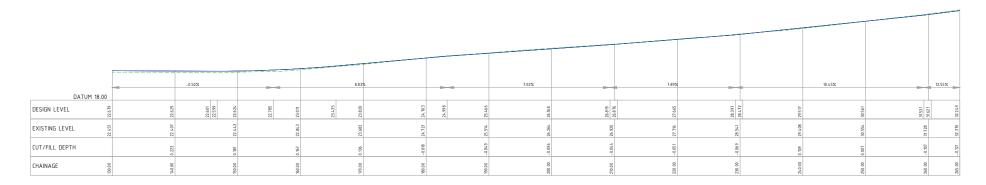

1. COMMENCE EXCAVATION ONLY WHEN THERE IS A 5 DAY FORECAST FOR 1MM OR RAIN OR LESS EACH DAY.

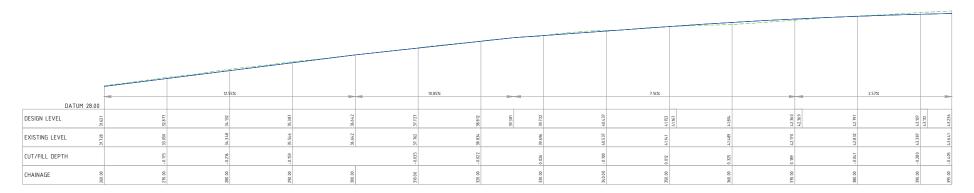
2. ALL WORK TO BE COMPLETED WITHIN 5 DAYS OF COMMENCING EXCAVATION.

3. EXCAVATED MATERIAL TO BE STOCKPILED OUTSIDE OF THE THE FLOOD OR TIDAL ZONE OF THE CREEK AND CONTAINED BY A SILT FENCE, OR REMOVED FROM SITE.

4. THE EXISTING GROUND SURFACE EXTERNAL TO THE ROCKS AND RENO MATTRESS SHALL NOT BE DISTURBED.

FLOW DIRECTION-2500 ACD HEADWALL IN ACCORDANCE WITH LGAT-SW-17-v3 LOW TIDE LINE. SPECIFIC LOCATION TO BE CONFIRMED ON SITE WITH THE ENGINEER AND COUNCIL. 750Ø RCP -0.250M DEEP ROCK PITCHING, WRAPPED IN GALVANISED RENO MATTRESS. RENO MATTRESS FIXED TO GROUND WITH SOIL NAILS. Sorell Council


MIN ROCK DIMENSION 150mm

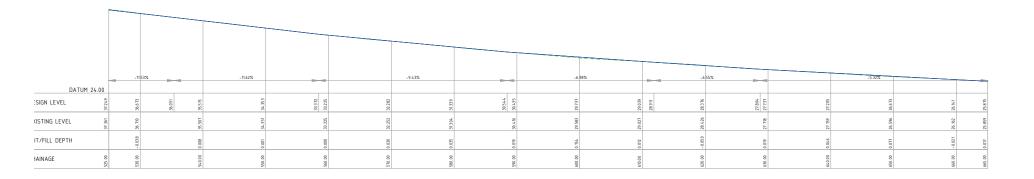

		te Received: 22/04/2	024					
	CLIENT: OLI JENT: ANNIE			No. AMENDMENT DESCRIPTION	DATE	15 LOT SUBDIVSION		
HIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL	GLIENT: ANNEU	CY GROUP PTY LTD		A CHANGES TO ADDRESS PLANNING RFI	09/04/2024	9 VALLEYFIELD RD, SORELL		
SULTING BRUNEERS. LAYDUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. BOUNDAMBHES ARE SUBJECT TO CHANGE - REFER TO SURVEYORS FLANS FOR ACCURATE BOUNDARY LOCATIONS.	0 10 20 30 40 50mm	Integral Consulting Engineers	APPROVED:			OUTLET DETAIL		
INETWORKS AND TELSTRA SERVICES ARE NOT SHOWN REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS.	PRINT REDUCTION BAR A1 SHEET	Civil - Structural - Project Management	OQUER			SCALE 1:200	DRAWING No.	REVISION
MUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	ALL INGHTS RESERVED STEPHEN COLE. NO REPRODUCTION UNLESS	m: 0417.650.474 e: beam@integralengiteers.com.au w: www.integralengiteers.com.au	Stephen Cole, Principal Engineer 8 Eng (Civil & Environmental), CPEng		_	DRAWN E.LEGG	23201- C06	(A)
	ALL NUMBS REDEVICE STEPHIN COLE. NO REPRODUCTION UNLESS	a: Lind 10, 11 Monitore 52 Hohart 2000	WIT Association Environmental, Or Day			DATE EEP 2024	120201 0000	~ \/ \/

Valleyfield Road, Sorell.pdf

Development Application: Response to Request for Information - 123 Rosendale Road and 9

											Deve for Ir Valle Plan Date	elopment Applica formation - 123 syfield Road, Sol s Reference: P7 Received: 22/	ation: Respons Rosendale Ro rell.pdf 04/2024	e to Request ad and 9
				-7.26%					-6.48%		-1121%			
DATUM 20.00)													
DESIGN LEVEL	31822	696.06	29.64.2	28.916	28.190	27,463	26.737	26.396	25404	25.000	23.868	23.015	22837	22.679 22.654
EXISTING LEVEL	31.82.2	30.242	29.5.06	28.8.02	28.088	27.5.23	26.768	000	25.459		00000	77 007	22.484	22.451
CUT/FILL DEPTH		220	0.136	0.114	0.10.2	090'0-	-0.031	0050	-0.055		6100	7110	0.352	0.228
CHAINAGE	0.00	20.00	30.00	00'07	50.00 51	60.00	70.00	00	90.00		0000	3	120.00	130.00

NOT FOR CONSTRUCTION


Sorell Council

NOTES 1. © THIS DRAWING IS FROTETED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PARPOSE WITHOUT THE WRITEN CONSENT OF INTERAL CORREL THE DEMORTERS.	CLIENT: ANNEC	Y GROUP PTY LTD		No. AMENDMENT DESCRIPTION A FOR PLANNING APPLICATION B CHANGES TO ADDRESS PLANNING RH	01/02/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. The LAYOUT OF RADES AND EXERVICES AND EXERCISE TO LOWING WITHOUT NOTICE. 3. LOI DEADWAREN AND EXERCISE AND	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL ROATH SEESING STEVEN CALE IN SHPRODUCTION UNLESS WOTTEN CORRECT INC.	Integral Consulting Engineers Crite Structural = Project Management = entrol@http://www.consult. = www.engineers.com.au = www.engineersen.com.au = www.engineersen.com.au	APPROVED:			ROAD LONGSECTION CH0.00 - 395 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	DRAWING No. 23201- C07	B

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

							the second s
257%		-4.62%			2	158%	
DATUM 32.00							
DATOM 32.00							
							_
SIGN LEVEL 0 21 28 28 28 29 20	179	5 8	281	5 5	30	975	22
<u>tr tr</u> 23 23 23	9	9 S	£1 £2	5 9	09	88	20
KISTING LEVEL 🖉 🎉 📓		2 2	5 5	5	2	w	9
	2 S	2 5	6	3	6	원	
	3	4 3	3 5	3	8	K X	×
JT/FILL DEPTH S E R	0 8	6 9	2 68	3	m	13	. 8
	8	20	50	5	9	0.0	0.0
			, 8	8			
	9			0			
1AINAGE 8 8 8 8 8	200	8 8	8 8	8	8		8
13 15 15 15 16 10 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	77		68	63	20	228	

		-5.32%			-4.22%				-3.20%				-1	145%	
DATUM	1 19.00														
SIGN LEVEL	26.14.1	92.67Z	2200	24.779	24.357	23.935	23565 23525	23.2.06	22.886	22.566	22.285 22.268	F41 42	21978	21833	21.688
(ISTING LEVEL	26.162	52	200	24.766	24.332	23.851	23.504	23.145	22.800	22.543	22.238	3 00	21887	21.769	21684
JT/FILL DEPTH		Ę	E0000-	E10.0	0.025	0.084	0.021	0.061	980.0	0.024	00.0		160 0	0.064	E00'0
IAINAGE	00.088	00 02.9	00089	00.069	00.007	710.00	720.00	00.02	00'042	150.00	00.097	00 042	00 082	190.00	800.00

NOTES 1 º DINE STANDARG S MONTETTO DE FCOPYREAT AND SAALL NOT DE USED FOR ANY PARPOSE WITHOUT THE WRITTEN CONSENT OF INTERNAL CORREL RAN BRANETES.	CLIENT: ANNEC	Y GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOU OF RADES AND EERVELS AND EMPIRICIPATION OF ANY DETAIL TO LANGE WHITOUT HOTEL. 3. LOT BOOMMENTS AND TESTING SERVICES AND ENTRY IN SERVICES PARK FOR ACLOSES AND TESTING ADAMANGE BY OTHERS. 4. TAS RETWORKS AND TESTING SERVICES AND TO DECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS. 5. YOU MUST CONTACT DALL BEFORE YOU DO TO DECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALI RIGHTS RESIRVED TETHNER COLE. NO SHPROACTION ULEDS WINTER COLERED FOR M	Integral Consulting Engineers Civil & Structural & Project Management # 017.850.474 * teamplinghategener.com.as # unit 20.1 Intension 2, Nature, 700	APPROVED: Sopher Cole, Principal Engineer 8 Eng (Dolf & Environmend), CPTing 1057 Accountables, Engineer Oct COS00 T			ROAD LONGSECTION CH390-801.12 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	DRAWING No. 23201- C08	B

NOTES 1. O THIS ISBANING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSIST! OF INTEGRAL CONCULTING BARRIERS.	CLIENT: ANNEC	Y GROUP PTY LTD		No. AMENDMENT DESCRIPTION A FOR PLANNING APPLICATION B CHANGES TO ADDRESS PLANNING RFI	DATE 01/02/2024 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. The LAYOUT OF RANZA MOR SERVICES AND SERV	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVED STERMON COLE. NO SHPRONCTOWLIEDS WINTER CORRECT ONEY	Integral Consulting Engineers Civil & Structural & Project Management *** 617/86/074 *** bandgendependence on that ************************************	APPROVED: Stephes Cale, Principal Degrees 8 Day (Dall & Dansmand), Chilling 1057 Accountable, Engineer to All CE3000 1			ROAD CROSS SECTIONS 1 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	DRAWING No. 23201- C09	B

							-	-	-	E		Ϊ		
			 		Π									
	DATUM 28	8.00												
	DESIGN LE	VEL	31362	31.72	31301	44.15	31.762	31822	31762	31.712	31391	32.108	32.331	
E	XISTING LEV	/EL g	31362	31.386	31419	31530	31.629	31.82	32.035	32.124	32.241	32.331		
	OFFSET	-10.000	-4.892	-4.633	-4.283	-3.000	-2.000	0.00.0	2.00.0	3.000	4.283	5.222		10.000
						0.		ropo CH (Ro	ad			

				Ý	~								
_	DATUM 26.00												
	DESIGN LEVEL	28.612	28 370	28.485	28.80.6	28.856	28.916	28.856	28.806	28.485	28.725	21.27	
	EXISTING LEVEL	28.612	28.666	28.692	28.767	28.784	28.802	28.863	28.919	28.991	20.110	20127	29.38
10.000	OFFSET	-5360	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	C 01 7	2	10.000
					01			sed 0.000		ad			

		ſ				Y	~	F	-	-			/	/	
D	ATUM 24.0	0													
DE	SIGN LEVEL	-	26.668	26.212	26.191	26.206	26422	26677	26.737	26.677	26.627	26.306	26.545	26.990	
EXIS	TING LEVEL	26.35		26.668	26.657	26.654	26.652	26.724	26.77	26.829	26.866	26.914		26.990	27.11
OF	FSET	-10.000		-6.064	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.334	10.0.00
							0			sed 0.000		ad			

				Ĭ	-						/		
DATUM 22	2.00												
DESIGN LEV	/EL	24.310	24,033	24.148	57770	24519	24579	24.519	24,469	24.148	24,388	241147	
EXISTING LEV	'EL 68.	24.310	24.339	24.351	24.396	24.430	24.500	24.570	24.605	24.650	24.710		37. 85
OFFSET	-10.000	-5,4,63	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.966		000.01
					01		ropos H 100			ad			

DESIGN LE	VEL	20533	57502	30.665	30.985	31035	31095	31035	30.985	30.665	30.904	31626		
EXISTING LEV	/EL e	30.533	30.537	30.569	30.687	30.778	30.96	31.12.7	31246	31351		31626	1010	2132
OFFSET	- 10.000	-4.682	-4.633	-4.283	-3.000	-2.000	0.0.0	2.000	3.0.00	4.283		7.167	000 00	0.000
					01			sed 0.000		ad				
	[Ĩ	_	-		-	F		7			

DATUM 24.00							
DESIGN LEVEL	28.071	27.643	28.130	28.190 28.130	28.080 27.759	27.998	and
EXISTING LEVEL #	28.071	28.098 28.104	28.099	28.09 28.120	28.166 28.2.27	28.3.06	2850
OFFSET	-5.916	-4.633	-2.000	2.000	3.000	5.923	10.000
				posed 50.000			

		DATUM	22.00													
		DESIGN I	EVEL	25.888	25.629	66936	25.91.7	25 992	26.052	25.992	25.942	25.622	25.861	26.286		
28.5.0	E)	KISTING L	EVEL 5	25,888	25.955	25.975	26.000	26.000	26.000	26.062	26.114	26.182		26.286	26.4.8	
10.000		OFFSET	- 10.00.0	111.2-	-4,633	-4.283	- 3.000	-2.000	0.0.00	2.000	3.000	4.283		6.2.76	10.000	
							0		ropo CH 8			ad				

						Ĭ									/
	DATUM 20.00														
	DESIGN LEVEL		23.126	22.938	22.984	23.053	23.355	23.434	23.494	23434	23353	23.287	23.171	22.989	23662
E	XISTING LEVEL	22.96		23.126	23.145	23.157	23.199	23.253	23.32	23.391	23.450		23.5.73	23.5.98	23.684
	OFFSET	- 10.00.0		-5.704	-5.140	-4.790	-3.583	-2.000	0.000	2.000	3.708		7.255	7.983	10.000
							0		горо: СН 11						

1	-2	8	2.0	ŝ	3
)1	P	ropos	ed I	Roa	ad
	- 0	CH 20	.000		

		*****	Ĩ										
DATUM 26.00		_								L			_
DESIGN LEVEL	01000	29 8 23	29 9 28	90.25g	BUEUE	695.05	30.3 <i>0</i> 9	30.259	29.938	177.00	30.958		(
KISTING LEVEL S	29.869	29.879	29.905	30.001	30.081	30.242	30.396	30.473	30.571		30.958	3116	EX
OFFSET	022.9-	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		7.341	10.00.0	(
				01	1 P		cod I	2.0	he				

29.242 29.296 29.296 29.5322 29.5322 29.5322 29.5322 29.522 29.5222 29.5222 29.5222 29

000 3.000

01 Proposed Road CH 30.000

681

242 263 279 339

5.070 4.633 4.283 3.000 2.000

DATUM 24.00											Į	
DESIGN LEVEL	28.071	27643	051.10	28.080	28.13A	28.190	28.130	28.080	27.759	27.998	28306	
EXISTING LEVEL #	28.071	28.098	28.104	28.099	28.095	28.09	28.120	28.166	28.227	7 0 0 V	00007	10 6.0
OFFSET	-5.916	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	c 00 3	677.0	00000
				01		ropo: CH 5			ad			

5.724 4.633 4.283 3.000 2.000

7.281 7.040 6.917 7.033 7.040 7.403 7.403 7.403 7.403 7.403 7.403 7.272 7.272 7.272 7.272

7.281 7.333 7.34.9 7.410 7.458 7.458 7.52 7.576 7.576 7.576 7.576

000 2.000 3.000

01 Proposed Road CH 60.000

	DATUM 2	2.00			Д	_	Ц					L,	_	
	DESIGN LE	VEL	25.225	21.858	726 72	26.291	2344	50707	25344	25.294	24.974	25.213	25.720	
E	XISTING LEV	VEL 98, 13V	25.225	25.316	25.339	25.331	25.373	25.46	25.545	25.588	25.643		25.720	
	OFFSET	- 10.0.00	-5.731	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.522	
						01					ad			
	E	DESIGN LE	DATUM 22.00 DESIGN LEVEL EXISTING LEVEL & OFFSET	DESIGN LEVEL	DESIGN LEVEL 22.252 EXISTING LEVEL 98.77 98.597 98.557 98.577 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.5777 97.57777 97	DESIGN LEVEL 9997 (1667) USSIGN LEVEL 5272 (277) EXISTING LEVEL 5272 (277)	DESIGN LEVEL Size Size	DESIGN LEVEL CONTR CONTR <thcontr< th=""> CONTR</thcontr<>	DESIGN LEVEL 97.92 (1977) 97.92 (1977)<	DESIGN LEVEL State State <thstate< th=""> State</thstate<>	DESIGN LEVEL 9752 9752 9762 USSIGN LEVEL 9752 9752 9762 9762 USSIGN LEVEL 9752 9762 9762 9762 USSIGN LEVEL 9752 9762 9762 9762 USSIGN LEVEL 9762 9762 9762 9762 USSIGN LEVEL 9762 16871 9762 16871 OFFSET 9762 16871 16872 16871	DESIGN LEVEL Strict in the second secon	DESIGN LEVEL State Integ Integ	DESIGN LEVEL 91/32

4,310 4,155 4,155 4,148 4,148 4,148 4,519

310 351 351 430

5,463 4,633 4,283 3,000 2,000

		ſ						
DATUM 20.00								
DESIGN LEVEL	22.224	22380	22.652 /	22.837	77.77	22.650	22379	
EXISTING LEVEL	22.224	22.240	22.387	22.48	22582	22.706	22759 22824	22.97
OFFSET	-6.046	-5.575	-2.000	0.00.0	2.000	4.539	5.620	10.000
				ropos H 120		oad		

				T							-	1		
	DATUM 26.00		_											
	DESIGN LEVEL	29.869	20.873	20.020	20.250	BUE DE	30.369	30.309	30.259	29.938	30.177	30.958		
E	XISTING LEVEL of	29.869	29.879	29.905	30.001	30.081	30.242	30.396	30.473	30.571		30.958	3116	E

DATUM 26.00

DESIGN LEVEL

EXISTING LEVELS

DATUM 28.00

OFFSET

		DATUM 24 DESIGN LEV		28.071	27.766	27.75	28.080	28.130	28.190	28.130	28.080	27.759	27.998	
3116	E	XISTING LEV	57.84 T3	120.00	28.098	28.104	28.099	28.095	28.09	28.120	28.166	28.227	10000	

DATUM 24.00

DESIGN LEVEL

EXISTING LEVEL 8

OFFSET

8

		-				<
				DATUM 22.00		
0.0	3 8	8	8		85	s

DATUM 22.00

DESIGN LEVEL

EXISTING LEVEL &

OFFSET

24.148	24,469	24519	24579	24.519	24,469	24.148	24,388	24.710				DESIGN	LEVEL	
100-14	24.396	24.430	24.500	24.570	24.605	24.650	24.710		24,85	1	E)	KISTING I	EVEL %	
-	-3.000	-2.000	0.00.0	2.00.0	3.000	4.283	5 96.6		10.0 00			OFFSET	-10.000	
	01			sed 10.00		ad								

10.000

					_	_	-				~	1	 	
	 		7		-	Contra Contra			F					
DATUM 18.00														
	-	2	7	5	\forall	5	-	_		- 1	1	4		
DESIGN LEVEL	22222	2.2.133	22.268	92569	22.619		22679	22.619	S69	22.248	22.488	22.716		
	22	00	5	1 6	5	1 3	22	22	22	22	22	22		
			_		~		_		L.	_				
XISTING LEVEL _욹	22.222	22.234	22.251	22.311	22.357		22451	22544	56	22.651	22.716		22.96	
21	2	23	22	22	22	- 2	2	23	22	5	6		6	
OFFSET	2	2	~	0	0		_	_		_			-	
OFFSET	-4.899	-4.633	-4.283	-3.0.00	-2.000	1	0.000	2.000	ĕ	4.283	5686		0000	
				_		-					0	•	 -	
				01			ose			ad				
					0	Η.	130.	000)					

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

NOT FOR CONSTRUCTION

Sorell Council

NOTES 1. O INS GRAVING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PERPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL OPENA TIME DEMANDERS.	CLIENT: ANNEC	Y GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	DATE 01/02/2024 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOUT DR RANGEA MORE SERVICES AND EAST DREAMED AND THORID THORIC. 3. LOI DRAMARMARK SHE RAKET TO TANK - REFERT D SERVICES FAN EFT PA LAYOUT ALL REAL REAL REAL REAL REAL REAL REAL	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL NORTH SEEMED STIFFIC CLL NO REPORTIONUALEDS	Integral Consulting Engineers Divid as Structural as Project Management as 0417 650 414 been displayed by the structure of the structure been displayed by the structure of the structure of the structure as used to 11 Memory 8, Hobert, 7000	APPROVED: Stephen Cole, Principal Engineer 8 Eng (Cole & Environment), CHang 1017 Accountable: Engineer End CE3000 1			ROAD CROSS SECTIONS CH 0 -260 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	23201- C10	B

	[Ĭ									
DATUM 1	8.00													
DESIGN LE	VEL	22.217	22.206	22.083	22.199	22549	22569	22.629	22569	22.519	22.199	22.438	22592	
EXISTING LE	VEL %		22.217	22.236	22.252	22.312	22.350	22.41	22 1.72	22.507	22.551	22.592		22.75
OFFSET	-10.000		-5.034	-4.633	-4.283	-3.000	-2.000	0.00.0	2 000	3.000	4.283	5.462		10.000
						01		горо :Н 14			ad			

					 			Ĭ									
		DATUM	20.0	0			_										
		DESIGN	LEVE	L	23.404	23.396	23276	23.389	23.710	23.760	23820	23.760	23.710	23.389	23.628	24.027	
22.75	ЕX	ISTING	LEVEI	23.12	10100	23.404	23.426	23.446	23.517	23.572	23.683	23.794	23.850	23.921		24.027	21. 21
10.000		OFFSET		-10.000	100	202	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.19.7	0000
									01		горс (Н 1			ad			

			Ĭ		-						
DATUM 22.00											
DESIGN LEVEL	25.816	25,622	75,737	26.058	26.108	26.168	26.108	26.058	25.737	25.976	26.940
EXISTING LEVEL	25.816	25.866	25.896	26.006	26.092	26.26	26.435	26.521	26.631		26.940
OFFSET	-5215	-4.633	-4.283	-3.000	-2.000	0.00.0	2.00.0	3.00.0	4.283		7.893
				01		opos H 200			ad		

			 		Ĩ								7	
	DATUM	26.00												
	DESIGN L	EVEL	20.02	020 020	29.086	20102	20162	29.517	29.457	29.407	29.086	29.325	29.968	
E	XISTING LE	EVEL 5	29.023	29.036	29.064	29.167	29.247	29.408	29.568	29.648	29.753		29.968	30.2.2
	OFFSET	-10.000	-4.791	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.929	10 0 00
						0.		горо :Н 24			ad			

	30.1	30	0 m	08	02	000	00	30.5	30.1	30.	30	
VEL 7		30.150	30.182	30.2.10	30.313	30.393	30.55	30.715	30.796	30.899		
- 10.00 0		-5.036	-4.633	-4.283	- 3.00.0	-2.000	0000	2.000	3.000	4.283		
					01			sed 50.00		ad		

			 		Ĩ						5			
	DATUM 20.0	0			Ш	L	Ц					L		
	DESIGN LEVE	L	22239	82.0.22	22.443	2254	22564	22.624	22564	22514	22.193	22,432	22662	
E)	KISTING LEVE	Z201	22.239	22.261	22.277	22.327	22366	22.44	22520	22.558	22.6.08	22 6 6 2		22.83
	OFFSET	- 10.00.0	-5.115	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283	5.689		10.000

01 Proposed Road CH 150.000

						\sim	1	7	_	-	F		/		
						I									
	DATUM	22.00													
	DESIGN I	EVEL	24.398	020.70	21.52	21. 272	21.593	24.643	24.703	24.643	24.593	24.272	24.512	25.135	
E)	XISTING L	EVEL %		24.398	24.441	24.463	24.54.0	24.600	24.72	24.84.2	24.902	24.979		25.135	25.32
	OFFSET	- 10.00.0		-5.355	-4.633	-4.283	- 3.000	-2.000	0000	2.000	3.000	4.283		6.872	10 000

01 Proposed Road CH 180.000

								_						/
				 		Ý		F			-			
						Ш								
						Ш								
		DATUN	1 24.00											
		DESIGN	LEVEL	26.488	100 TC	26.445	26.766	26.816	26.876	26.816	26.766	26.445	26.684	
2532		EXISTING	LEVEL g	26,488	26.5.27	26.556	26.665	26.750	26.920	27.091	27.176	27.285		
10.000		OFFSET	-10.00.0	-5.108	-4.633	-4.283	-3.000	-2.000	0.0 00	2.000	3.0.00	4.283		
							01			sed 10.00		ad		

	DATUM 2	6.00			J									
	DESIGN LE	VEL	30.150	30.138	30.015	10.00	10505	30.561	30.501	30.451	30.131	30.370	31145	
E	XISTING LE	VEL 7		30.150	30.2.10	30.313	30.393	30.55	30.715	30.796	30.899		31145	3136
	OFFSET	- 10.00.0		-4633	-4.283	-3.000	-2.000	0.0.00	2.000	3.000	4.283		7325	10.000

	DATUM	20.00												
	DESIGN L	EVEL	22.239	22.078	22 193	22.54	22564	22.624	22.564	22.514	22.193	22,432	22 6 62	
E)	KISTING LE	EVEL 15	22.239	22.261	22277	22.327	22.366	2244	22520	22.558	22.608	22.662		22.83
	OFFSET	- 10.0 00	-5.115	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.689		10.000
01 Proposed Road CH 150.000														

2599 2587 2580 2261 2901 2951 2951

599 619 636 698 74.6

5.037 4.633 4.283 3.000 2.000

2.951 2.901 2.580 2.2819 2.819 3.136

389

ž

000 2.000 3.000

01 Proposed Road CH 160.000

DATUM 20.00

DESIGN LEVEL

EXISTING LEVEL;

OFFSET

DATUM 22.	00												
DESIGN LEV	5L	25.112	20.920	25.035	25 36K	90752	25.466	90752	25.356	25.035	25274	26.127	
EXISTING LEVE	24.74	25.112	25.156	25.183	25.282	25.359	25.51	25.677	25.758	25.862		26.127	26.33
OFFSET	- 10.000	-5.210	-4.633	-4.283	- 3.000	-2.000	0.00.0	2.000	3.000	4.283		7.560	10.000
					01		opos H 19			ad			

25.816 25.744 25.622 25.628 26.168 26.168 26.168 26.168 26.168 26.168 26.168 26.168 26.168 26.168

28

0.000 000

01 Proposed Road CH 200.000

435

863

->

316 396 396 396 392 392

5.215 4.633 4.283 3.000 2.000

DATUM 22.00

DESIGN LEVEL

EXISTING LEVEL

OFFSET

8

DATUM 24.	00													
DESIGN LEVE	EL	27.249	27.119	786 24	23555	27.605	27.665	27.6 05	27555	27.234	27.473	28.324		
EXISTING LEVE	26.90	27.299	27.343	27.371	27.474	27.555	27.716	27.877	27.957	28.061		28.324	7857	10.01
OFFSET	- 10.000	-5.175	- 4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		7.551	00001	* 10.01
					01		торо: Н 22			ad				

8.09 8.048 7.7226 7.7226 7.7228 7.72 2.8472 2.8472 2.8472 2.82604 2.8262 2.82604 2.826004 2.82604 2.82604 2.82604 2.826004 2.826004 2.8260000000000000

000 3.000

01 Proposed Road CH 230.000

279 8 R

7.664 000

10.000 27.11

591 8

109 156 185 194

5.183 4.633 4.283 3.000

DATUM 24.00

DESIGN LEVEL

EXISTING LEVEL R

OFFSET

DATUM 26.00			
DESIGN LEVEL	30.150 30.138 30.015	30.131 30.451 30.501 30.561	30.501 30.451 30.131 30.370 31.145
EXISTING LEVEL #	30.150 30.182	30.210 30.313 30.393 30.55	30.715 30.796 30.899 30.899
OFFSET	-5.036	-4.283 -3.000 -2.000 0.000	2.000 3.000 4.283 7.325
		01 Propo CH 25	

3136

10.000

			-
		01	Ρ

		\mathbf{M}				ĺ	
DATUM 28.00							
DESIGN LEVEL	31.273	31075 31791 31511	31561	31561	31191	31430	
EXISTING LEVEL	31273	31355 31467	31554 31728	31902	32.101	32.424	0766
OFFSET	-5.225	-4.283 -4.283	-2.000 0.000	2.000	4.283	7.982	0000
		01	Propo CH 26		ad		

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

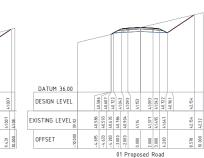
NOT FOR CONSTRUCTION

		Valley Plans Date I
[

DRELL XUNG **Sorell Council**

NITS 1.0 FINS DRAWING IS PROTECTED BY COPYRIGHT AND SMALL NOT BE USED FOR ANY PRIPOSE WITHOUT THE WRITTEN CONSENT OF INTERNAL CONSELTING BURGHEES.	CLIENT: CLIENT: ANNEC	Y GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	DATE 01/02/2024 09/04/2024	- S VALLE ITTELD ITD, SOTIELE		
 The LAYOUT OF PAGES AND SURVEYS ARE SUBJECT TO CAMPLE WITHOUT NOTE: To BOULDANDER SERVICES AND SUBJECT SUBJECT TO CAMPLE WITHOUT NOTE: TASS METADRISK AND TELSTRA SERVICES ARE TOT SOWN REFER TO TAS METADRISK AND TELSTRA DRAWINGS BY OTHERS TASS METADRISK AND TELSTRA SERVICES ARE TOT SOWN REFER TO TAS METADRISK AND TELSTRA DRAWINGS BY OTHERS TOW NUST CONTACT DAL, BEFORE YOU DO TO OFECK THE LOLATIONS OF ANY SITE SERVICES BEFORE WORK STARTS. 	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESIRVED STEMPS CLE. NO SPROACHOVILLESS WINTER CORRECT ONE	Integral Consulting Engineers Ciril = Structural = Project Management = 041780.414 = bandjoptingsampters.com.as = utaria.7.1 Intenson 8, Admin. 7000	APPROVED: Dopher Cole, Principal Explorem 8 Eng (Enril & Environmend), CPEIn WET/Accountables: Explorement Cetting Dop 1			ROAD CROSS SECTIONS CH 270-360 SCALE 1:100 DRAWN E.LEGG DATE FEB 2024	DRAWING No. 23201- C11	B

CH 330.000



01 Proposed Road

CH 300.000

						1	_							/	
	DATUM 38.0	0													
	DESIGN LEVE	L	567.04	41145	1362	11383	11200	11756	11814	41754	70117	41383	41622	42.428	
E	XISTING LEVE	40.29		40.735	40.926	40.968	41121	41241	6717	17217	41868	42.030		42.428	42.76
	OFFSET	-10.000		-6.231	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283		7.4.19	10.000
							0.	1 P	гороз	ed I	Roi	ad			

CH 360.000

CH 350.000

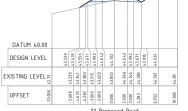
1884

0.000

SORELL

Sorell Council 20

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024



DATUM 40.00

DESIGN LEVEL

EXISTING LEVEL ≠

OFFSET

43312 43313 4344 4344 43879 43879 43879 43879 43879 43879 43879 43879 43879 43867 43867 43867

000 000

01 Proposed Road CH 420.000

312 360 509 624 856 088 204 352

+693

3	4	4	4	4	3	3	3	3	3	3	
-5.608	-4.633	-4.283	- 3.000	-2.000	0.0 00	2.000	3.000	4.283	6.952	10.000	
			01	I P (горо: Н 43	sed 80.00		ad			

DATUM 38.00							
DESIGN LEVEL	42.025	41.706	41822	42.753	42.193	42.143	42.682
EXISTING LEVEL &	42.025	42.075	42.162	42.321	42.427	42480	42.682
OFFSET	-5.588	-4.633	-3.000	0.000	2.000	3.000	6.863
			01	Ргоро	sed A	Road	

DATUM 40.00

DESIGN LEVEL

EXISTING LEVEL #

OFFSET

839

CH 470.000

4229 4229 4229 4229 4284 4265 42655 42655 42655 42265 42265

975 081 134 202

01 Proposed Road

CH 460.000

2.000

596 681 704 788 853

5.913 4.633 4.283 3.000 2.000

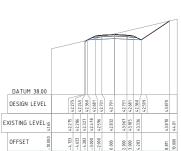
2.83

8

000

253

887


20

		DATUM	36.00												
		DESIGN L	EVEL	39.724	01305	90905	976 68	966.65	40.056	39.996	39.94.6	39.626	39.865	001.04	
10.75	E	XISTING L	EVEL 8	39.724	39.746	39.758	39.802	39.8.36	39.904	39.972	40.008	40.072	40.150		40.36
10.000		OFFSET	-10.000	-5.275	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283	5.854		10.000

01 Proposed Road CH 500.000

				Y		-							
DATUM		ي م							2	9			
DESIGN	LEVEL	39.724	39.633	96965	970.02	900.05	40.056	39:996	39.946	39.626	39.865	40.150	
EXISTING	LEVEL 85	762.05	39.746	39.758	39.802	39.836	39.904	39.972	40.008	40.072	0.150		40.36
OFFSET	-10.000	5.3 TE	-17.03	-4.283	-3.000	-2.000	0.00 0	2.00.0	3.000	4.283	2,854		10.000
					0.	I Pi	ropos	ed F	۲o	ad			

CH 500.000

42.740 42.561 42.561 42.597 43.107 43.047 40

633 756 914

2000

01 Proposed Road CH 390.000

01 Proposed Road CH 380.000

2.809 2.809 2.854 3.018 3.141 3.141

5.169 4.633 4.283 3.000 -2.000

DATUM 40.00

DESIGN LEVEL

EXISTING LEVEL ≈

OFFSET

62

80

				Ĩ	_					~		-	 	1
	DATUM 38.00													
	DESIGN LEVEL	26707	51707	10591	10861	100.07	196.05	40.901	40.851	40.531	40.770	40.896		
E	XISTING LEVEL	40.497	40.506	40.520	40.570	40.609	40.69	40.765	108.05	40.854	40.896		4110	
	OFFSET	-4.877	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283	5.380		10.000	
					0.		ropos			ad				

CH 490.000

NOTES 1 • O HAS ESHANGE & MONTETTE BY COPYREM AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CORRELING INDUSTRYS.	CLIENT: ANNECY	Y GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	DATE 01/02/2024 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOUT OF RAUGE AND EXPIRES AND SUBJECT TO DAMARE WITHOUT NOTE. 3. OT BOOLNMENSE AND STRUCTURE A REPORT SUBJECTORY PLANS FOR ACCOUNTE BOOLNEWY LOCATORS. 4. TAS INTOWINGS AND TRUSTING SERVICES ARE NOT SHORN REPORT TO TAS INTOWINGS AND TRUSTING DAMANGS OF OTHERS. 5. TOO INDIT CONTACT DAL, BEFORE TOO DIG TO DERCK THE LICATING OF ANY SITE SERVICES BEFORE WIGH STATTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVES STEME OCC. LIN BARMOUNTON VALUES WINTER VOLUME IN BARMON BARMON	Integral Consulting Engineers Civil =: Structural =: Project Management rr 0417 200 044 ************************************	APPROVED: Displan Coli. Principal Gold Starg (Coli. Stransmission), CHing NGT Accorditation: Engineer Coli CCSD0 1			ROAD CROSS SECTIONS CH370-500 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	DRAWING NO. 23201- C12	B

ACTES 1 0 MAX TAXAND OF PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PAPPOSE WITHOUT THE WRITEX CONSIST OF INTERNAL ACTES AND AND ACTES	CLIENT: ANNE	CY GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOUT OF RADES, NO ERVICES AN EXAMPLET TO CAMBLE WHITOUT NOTICE. 1. DI READMARKAN SEE SUBJECT TO CAMBLE WHITOUT NOTICE. 1. DIS ANDMARKAN SEE SUBJECT COMPAREMENTS TO ASS INTERESTS AND TRASTAR BUDDARY LOCATIONS. 1. STAN WHICH SAN DI TESTRA JERVICES ARE NOT SHOWN REPER TO ASS INTERESTS AND TRASTAR BUDDARY LOCATIONS. 1. YOU HILT CONTACT DAL BEFORE YOU DID TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	0 10 20 30 40 58mm PRINT REDUCTION BAR A1 SHEET ALL RIGHTS RESERVES STIFFUNCTION UNLESS WITTER COREN COLOR	Integral Consulting Engineers Civil = Structural = Project Management = 0417 680 474 = terminification for the structure of the structure = terminification for the structure of the structure = terminification (structure), Nature (7000)	APPROVED: Stephen Cole, Principal Engineer 8 Eng (Cole & Environmend), CPEng 1077 Accordiation.: Engineer Cole (C5000 T			ROAD CROSS SECTIONS CH510-640 SCALE 1:100 DRAWN E.LEGG DATE FEB 2024	23201- C13	B

DATUM 36.00													
DESIGN LEVEL	39.057 38.555 38.555 38.979 38.977 38.977 38.977 38.977 38.977 38.977 38.977 38.977 38.777 38.777 38.777 38.7777 38.7777 38.77777 38.7777777777												
EXISTING LEVEL	39.057 39.059 39.095 39.168 39.168 39.168 39.202 39.219 39.278 39.278												
OFFSET	-6505 -4,633 -4,633 -4,283 -2,000 0,000 0,000 1,283 4,283 6,471 6,471												
01 Proposed Road CH 510.000													

		DATUM	30.00)													
		DESIGN L	EVEL	-	34.267	11.92929	33.807	33.922	31.213	21.203	34.353	34.293	34,243	33.922	34.161	34,436	
39.34	E)	KISTING L		34.22	34.267	100 10	107.40	34.289	34.308	34.322	36.35	34.380	34.395	34.414	36.1.26	004-40	34.50
10.000		OFFSET		-10.000	-6.013	(4.33	CCO.+-	-4.283	-3.000	-2.000	0.00 0	2.000	3.00.0	4.283	5.875	670.0	10.0.00
									01		ropo H 5			ad			

				Ĭ							ĺ		
	DATUM 28.00												
	DESIGN LEVEL	31.083	016.05	SU ONG	31229	31279	31339	31279	31229	30.909	31148	31562	
00.40	EXISTING LEVEL	31.083	31.117	31132	31.183	31223	3130	31384	31425	31476		31562	
0000	OFFSET	-5.5 01	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.24.4	
					01		opos H 58			ad			

>/

10.0.00

	ſ			Ì							-	/	
DATUM 26.0	0												
DESIGN LEVE	L	28.736	28.615	264.02	28 070	28.979	29.039	28.979	28.929	28.608	28.847	29.374	
EXISTING LEVE	28.48	76.2.06	28.775	28.794	28.864	28.919	29.03	29.132	29.185	29.253		29.374	20 53
OFFSET	-10.000	676.3	1,633	-4.283	-3.000	-2.000	0.00.0	2.00.0	3.000	4.283		6.581	0000
					0		ropos CH 610			ad			

DATUM 34.00												
DESIGN LEVEL	38.008	37.280	37.766	37.766	37.716 37.395	37.634 38.079						
EXISTING LEVEL g	38.0.08	38.028	38.034	38.056	38.0.61	910.95	38.10					
OFFSET	718.à-	-4.283	-2.000	2.000	3.000	6.334	10.000					
01 Proposed Road CH 520.000												

	DATUM 30	.00												
	DESIGN LEV	/EL	 34.261	33807	23 0 22	31.713	31, 203	34,353	34.293	34.243	33.922	34.161	34.436	
E:	XISTING LEV	EL 27.92	34.267	34.284	34.289	34.308	34.322	34.35	34.380	34.395	34.414	34.436		34.50
	OFFSET	- 10.00.0	-6.013	-4.633	-4.283	-3.000	-2.000	00.000	2.000	3.000	4.283	5.8.25		10.000

01 Proposed Road CH 550.000

							Ý	~			Î					/
		DATUM	26.00													
		DESIGN L	EVEL	30.137	30.011	29,889	30.001	30.8.05	20.275		00100	30.375	30.325	30.004	30.243	30.754
34.50	E)	KISTING L	EVEL 5		30.137	30.176	30.194	30.2.60	30.312	0.00	7400	30.5.19	30.571	30.638		30.754
10.000		OFFSET	- 10.00.0		-5.378	-4.633	-4.283	-3.000	-2.000	0000	0000	2.0.00	3.000	4.283		6.533
								01				ed A		ad		

				Y	2						-			
DATUM 24.00											L			
DESIGN LEVEL		28.189	UE822	27945	28.246	28.316	28.376	28.316	28.266	27.945	28.185	28.674		
EXISTING LEVEL	10.97	28.189	28.234	28.248	28.301	28.343	28.426	28.5.09	28549	28.597		28.674		28.79
OFFSET	- 10:00.0	-5.710	-4.633	-4.283	- 3.00.0	-2.000	0.0 00	2.000	3.0.00	4.283		6.467		10.000
	01 Proposed Road CH 620.000													

-2	8	5.0	ŝ	3	1
1 Pr	opos	ed I	Roa	ad	
C	H 530	0.00	0		

					Ĭ	/								1	 	
	DATUM 34.00															
	DESIGN LEVEL		96.670	36.126	36.24.2	36.563	36.613	27.72	20.00	36.613	36.563	36.24.2	36.481	36.750		
E:	XISTING LEVEL	-	36.670	36.680	36.683	36.691	36.697	WE 76	30. FIU	36.724	36.730	36.738	1 36.70	001.00	36.78	
	OFFSET	-	-6.262	-4.633	-4.283	- 3.000	-2.000	0000	0.000	2.000	3.000	4.283	c on c	0.00.0	10.000	
						01	P	rop	05	ed I	Ro	ad				

DATUM 30.00												
DESIGN LEVEL	33.090	82.9 25	762.62	3315	33.165	33.225	33.165	33.115	32.794	33.033	33.362	
EXISTING LEVEL	33.090	33.119	33.127	33.156	33.179	33.22	33.271	33.294	33.323		33.362	33.45
OFFSET	-5.868	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		196.0	10.000
				01		ropos H 56			ad			

	DATUM 26.00	
	DESIGN LEVEL	2330 1919 1919 1919 1919 1919 1919 1919 1
33.45	EXISTING LEVEL z	29.310 29.329 29.473 29.473 29.473 29.693 29.693 29.693 29.618 29.818 29.818
10.000	OFFSET	-4, 990 -4, 633 -4, 283 -3,000 -2,000 0.000 4, 283 4, 283 6, 119
		01 Proposed Road CH 600.000

			Ĩ									
DATUM 24.00												
DESIGN LEVEL	27.484	2101	27 306	20920	11910	27.737	27.677	27.627	27306	27545	27.970	
EXISTING LEVEL	27.484	27.522	27.537	27.592	27.635	27.718	27.783	27.827	27.883		27.970	
OFFSET	-5.512	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.274	
				0		ropo: H 63			ad			

	DATUM	1 32.00												
	DESIGN	LEVEL	35.462	160.55	26 401	100.00	357.55	35.55	35,455	35.405	35.084	35.324	35.571	
E	XISTING	LEVEL S	35.462	35.473	35.476	35.485	35.493	35.51	35.529	35.54.1	35.555	35.571		35.62
	OFFSET	-10.000	412	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.74.2		10.000
						0		ropos H 54			ad			

DATUM 28.00				
DESIGN LEVEL	32.070 31.858 31.736	31851 32.172 32.222 32.282	32.222 32.172 31.851	32.090
EXISTING LEVEL	32.070 32.102	32.113 32.155 32.187 32.25	32.317 32.34.9 32.391	32.449
OFFSET 응	-5.634	-4.283 -3.000 -2.000 0.000	2.000 3.000 4.283	6.076
		01 Propos CH 57		

					 		ľ		1							
		DATUM	26.00)												
		DESIGN			29310	29 191	908.02	209.02	20,072	29.737	29.677	29.627	29.306	29.545	29.918	
32.57	E)	KISTING I	EVEL	29.04	29.310	29.329	29.34.8	29.419	29.473	29.58	29.693	29.74.7	29.818		29.918	
10.0 00		OFFSET		-10.000	-4.990	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.119	
								01		горо Н 60			ad			

					N	2	-	-		F	~	/	1	
						1								
	DATUM 2	4.00												
	DESIGN LE	VEL	26.953	26.781	26.659	26.114	27.45	27.205	27.145	27.095	26.774	27.013	27.382	
E:	KISTING LE	75 % JAV		26.953	27.009	27.064	27.108	27.16	27.203	27.24.6	27.303		27.382	27.55
	OFFSET	-10.000		-5.514	-4.283	-3.000	-2.000	0.00.0	2.00.0	3.00.0	4.283		6.107	10.000
						0		горо ЭН 64			ad			

10.000

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

NOT FOR CONSTRUCTION

Sorell Council

NOTES 1 & THIS DRAWING IS PROTECTED BY COPYRIGHT AND SMALL NOT BE USED FOR ANY PRIPOSE WITHOUT THE WRITTEN CONEDIT OF INTEGRAL CONCULTING DRIMETERS.	CLIENT: CLIENT: ANNEC	Y GROUP PTY LTD		AMENDMENT DESCRIPTION FOR PLANNING APPLICATION CHANGES TO ADDRESS PLANNING RFI	09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYON'D OF RADAS, MAR ERVECTS ARE SUBJECT TO GAMMER WITHOUT NOTICE. 1. DIE BOARMAREN BER BERKET TO GAMER. HERTER TO SUPPORTS PARAFORM CALCULATIONS. 4. TAS KETVORRS MAD TESTING SUPPORTS ARE HOT SHONN RETER TO TAS KETVORRS AND TESTING ARAMANGE BY OTHERS. 5. YOM HINST CONTACT DAL BEFORE YOU DO TO DECKY THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHT RESPRAS ITTIMEN COLL NO REPROJUCTION UNLESS WINTER CORRECT ONEN	Integral Consulting Engineers Ciril = Structural = Project Management = 017 850 474 = bandpalangement.com.as = band = 10 Banda = Abanda = 700	APPROVED: Stephen Cole, Principal Explorer 8 Eng (Dark & Environmende, Offing WIST Accountables: Explorer Cold CESSIO 1			ROAD CROSS SECTIONS CH650-770 SCALE 1:100 DRAWN E.LEGG DATE FEB 2024	23201- C14	B

	[-	9	1	F		_	F		1	1		
DATUM 24.	00													
DESIGN LEVE	EL .	26.394	26.127	26.24.2	26563	26.613	26.673	26.613	26.563	26.242	26.482	26.885		
EXISTING LEVE	L #	26.394	26.432	26.448	26.484	26.507	26.596	26.692	26.733	26.795		26.885		27.05
OFFSET	-10.000	-5.4.35	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.209		10.0.00
	OFFSET 8 5 7													

					[Ĭ	~	R.				~			
			DATUM	1 22.00														
0.000			DESIGN	LEVEL		24.960	24.777	24655	122.70	25.091	25.141	25.201	25.14.1	25.091	24.771	25.010	25.423	
60.02	27.05	1	EXISTING	LEVEL		030.10	74.700	24.999	25.015	25.071	25.115	25.20	25.282	25.320	25.358		25.423	25.57
607.0	10.000		OFFSET	000 08	-10.000	6733	1+00-	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283		6.239	10.000
										01			sed 10.001		ad			

				2								
DATUM 20.00												
DESIGN LEVEL	23.740	000.00	23506	23.875	23875	23.935	23.875	23.825	23.504	23.743	24.064	
EXISTING LEVEL	23.740	23.765	23.771	23.795	23.814	23.85	23.914	23.947	23.991	1 101	100.47	
OFFSET	-5.688	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	- 20.2	002.0	
				01		горо СН 71			ad			

	DATUM 18.00	,												
D	ESIGN LEVEL	-	22.388	22.143	20.136	22156	22506	22566	22.506	22.456	22.136	22.375	22.650	
EXIS	STING LEVEL	22.26	005.00	22.408	22.415	22.451	22,483	22.54	22.596	22.619	22 6 33	22.450	00037	22.72
0	FFSET	-10.000	737	1,633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	C 07.0	t 70.7	10.000
						0.		ropo: 14 75			ad			

		-	\sim		-		/	1	
DATUM 24.00									
DESIGN LEVEL	26.394	26.127	26.563	26.673	26.613	26.563	26.482	26.885	
EXISTING LEVEL ∞	26.394	26.4.32 26.4.4.8	26.484	26.5.96	26.6.92	26.733	61.92	26.885	27.05
OFFSET	-5,435	-4.633	-3.000	0.000	2.000	3.0.00	582.4	6.2.09	10.000
				Propo CH 65			i		

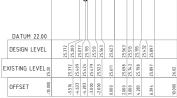
			 		5	1	-			F		/	1	
					Ĩ									
	DATUM 22	2.00												
	DESIGN LE	VEL	24.542	26.723	315 348	21.669	21. 710	24.779	24.719	24.669	24.348	24.587	24.958	
E:	XISTING LEV	/EL ೫	24.54.2	24.578	24.591	24.64.2	24.687	24.77	24.829	24.860	24.900		24.958	25.09
	OFFSET	- 10.00 0	-5.562	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283		6.111	10.000
						01		ropo H 69			ad			

	DATUM 20.00										
	DESIGN LEVEL	23.318	22.979	34782	23465	23525	23.465	23.415	23.095	23.334	
60.02	EXISTING LEVEL of	23.3.18	23351 23362	23.406	23.44.3	2350	23572	23.606	23.648	23.704	
10.000	OFFSET	-5.650	-4.633	-3.000	-2.000	0.000	2.000	3.000	4.283	6.111	
				01		opos H 72			ad		

10.000

						Ĭ	7					1			
	DATUM DESIGN L		22388	22.143	22.020	22.136	22 456	225.06	22566	22506	2.456	22.136	22375	1607	
E)	KISTING LI	EVEL %				22.415	22.451	22.483	22.54		22.619	22.633	22.650		01.00
	OFFSET	- 10.000		-5.736	-4.633	-4.283	-3.000	-2.000	0.000	2.000	3.000	4.283	5.824		000 08

01 Proposed Road CH 750.000


DATUM 22.00													
DESIGN LEVEL	25.378 25.778 25.771 25.771 25.771 25.781 25	26.081 26.031 25.711 25.364 26.364											
EXISTING LEVEL 3	25.877 25.923 25.942 26.011 26.012 26.062 26.162	26.226 26.255 26.255 26.364 26.364 26.52											
OFFSET	-5479 -4.633 -4.283 -3000 -2.000	2.000 3.000 4.283 6.243 10.000											
	01 Proposed Road CH 660.000												


DATUM 20	.00												
DESIGN LEV	/EL	24.135	73.811	33 976	21. 21.7	162.42	24.357	762.42	24.247	23.926	24.165	24.512	
EXISTING LEV	EL # 23	24,135	24.179	24.194	24.238	24,269	24332	24396	24,430	24,473		24512	
OFFSET	- 10.000	-5.605	-4.633	-4.283	- 3.0 00	-2.000	0.00.0	2.000	3.000	4.283		6.040	
					0.		opos H 70			ad			

			Ĩ									
DATUM 20.00		_		Ĺ						Ļ	L	
DESIGN LEVEL	22.962	22.782	36.6 66	20060	23.146	23.2.06	23.146	23.096	22.775	23.014	6	
EXISTING LEVEL	22962	22.991	23.001	23.045	23.079	23.145	23.197	23.220	23.250	23.285		23.39
OFFSET	6122-	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.811		10.000
				0		тороз Н 73			ad			

DATUM 18.00		Ц						
DESIGN LEVEL	22.116	21722	22.158	22 268	22.208 22.158	21837	22386	
EXISTING LEVEL 8	22.116	22.148	22.192	22.238	22.289 22.315	22349	22.386	2247
OFFSET	-5.816	-4.283	-3.000	0.00.0	2.000	4.283	5.928	10.000
				ropos EH 76	sed Ro 0.000	ad		

4	e-	-2.0	0.00	2.00	3.00	4.2
	01	1 P	горо	sed I	Roa	ad
		0	H 67	0.00	0	

						Y	-					5		
		DATUM	20.00											
		DESIGN L	EVEL	22.671	22462	22.540	317 00	22.826	22.886	22826	22.776	22455	22.695	22.955
-	E	XISTING L	EVEL 25		22706	22.718	22.745	22763	22.80	22837	22.866	22.907	22.955	
		OFFSET	-10.000		-1633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.780	
							01		горо: Н 74			ad		

						<		-			F		/		
						Ĩ									
	DATU	1 18.00													
	DESIGN	LEVEL	10000	21690	21577	21692	22.013	22.063	22.723	22.063	22.013	21692	21931	22.165	
E	XISTING	LE VEL 😤		21891	21920	21930	21964	21988	22.01	22.051	22.079	22.119	22165		92.29
	OFFSET	-10.000		-5575	-4.633	-4.283	-3.000	-2.000	0.00.0	2.00.0	3.000	4.283	5.700		10.0.00
							0.		ropo H 71			ad			

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

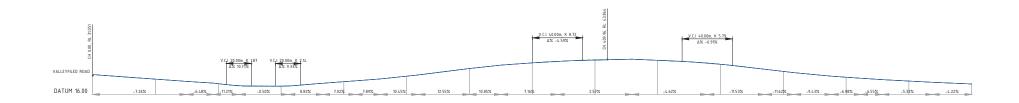
Sorell Council

	33 TIPICAL (BOSS FALL
DATUM 18.00	
DESIGN LEVEL	21542 21248 21248 21562 21672 21672 21672 21672 21672 21672 21672 21672 21672 21672
EXISTING LEVEL	21542 21574 21574 21670 21672 21672 21774 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 21776 217777 217777 217777 2177777 2177777777
OFFSET	-5.882 -4.633 -4.283 -3.000 0.000 2.000 4.283 5.947
	01 Proposed Road
	CH 801.068
DATUM 18.00	
DESIGN LEVEL	21547 21264 21578 21628 21628 21628 21628 21628 21628 21628 21628 21628 21628 21628 21628 21628
EXISTING LEVEL 3	21547 21578 21587 21649 21642 21642 21746 21747 21776 21777
OFFSET	-5.85.0 -4.633 -4.233 -3.000 -2.000 5.936 5.936 5.936
	01 Proposed Road

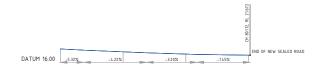
	DATUM 1	18.00													
	DESIGN LE	EVEL	21626	211.09	21287	211.02	21723	21773	21833	21773	21723	21402	21641	21912	
E	XISTING LE	VEL 212		21626	21651	21660	21693	21.718	21.769	21819	21844	21876	21912		22.00
	OFFSET	-10.00.0		-5.650	-4.633	-4.283	-3.000	-2.000	0.0 00	2 0 00	3.000	4.283	5.811		10.0.00

01 Proposed Road CH 790.000

	DATUM 18. DESIGN LEV		21.754	21554	21472	87810	21918	21978	1918	21.868	21547	21.786	22.020	
E:	XISTING LEV	5165 TB		1	21789 2	21818 2	21841	2189 2		21956 2	21985 2	<u> </u>	Τ.	22.12
	OFFSET	-10.0.00	10.4.5	-4.633	-4.283	-3.000	-2.000	0.00.0	2.000	3.000	4.283	5.701		10.00.0
						01		ropo 11 78			ad			


DATUM 18.00	
DESIGN LEVEL	21542 21248 21126 21562 21562 21562 21562 21542 21542 21542 21542 21542 21542 21542 21542 21542 21542 21542 21542 21542
EXISTING LEVEL	21542 21574 21583 21683 21672 21672 21672 21746 21746 21796 21796 21796 21796
OFFSET	-5.882 -4.633 -4.633 -4.283 -3.000 -2.000 -2.000 4.283 5.947 5.947
	01 Proposed Road CH 801.068

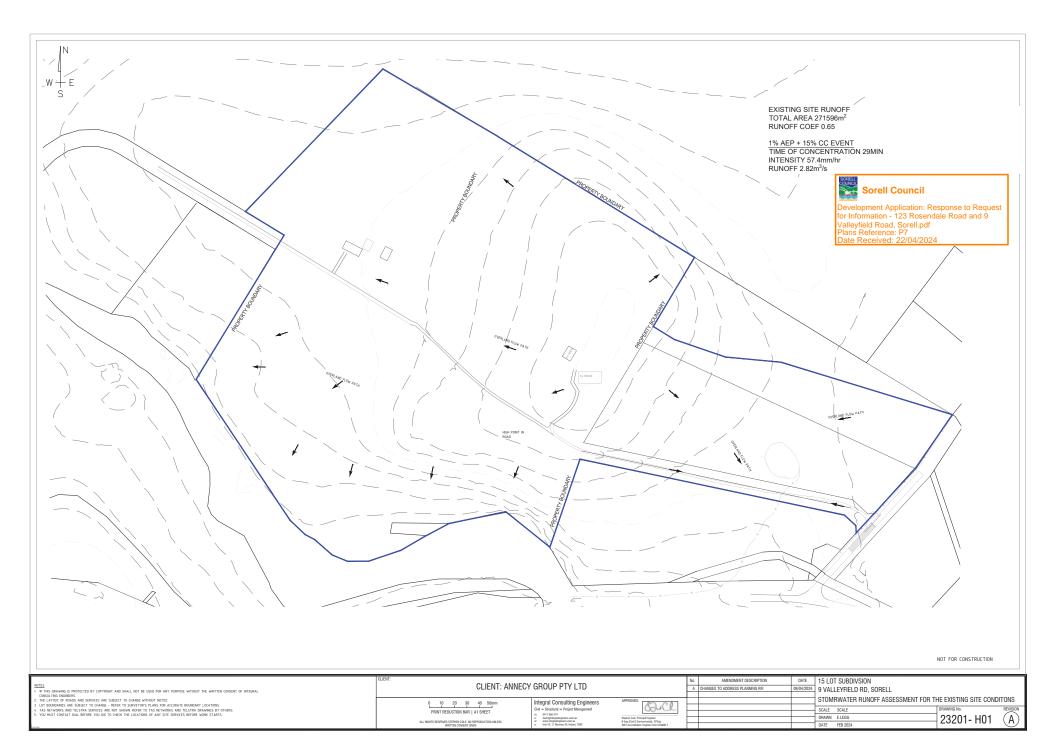
NOT FOR CONSTRUCTION

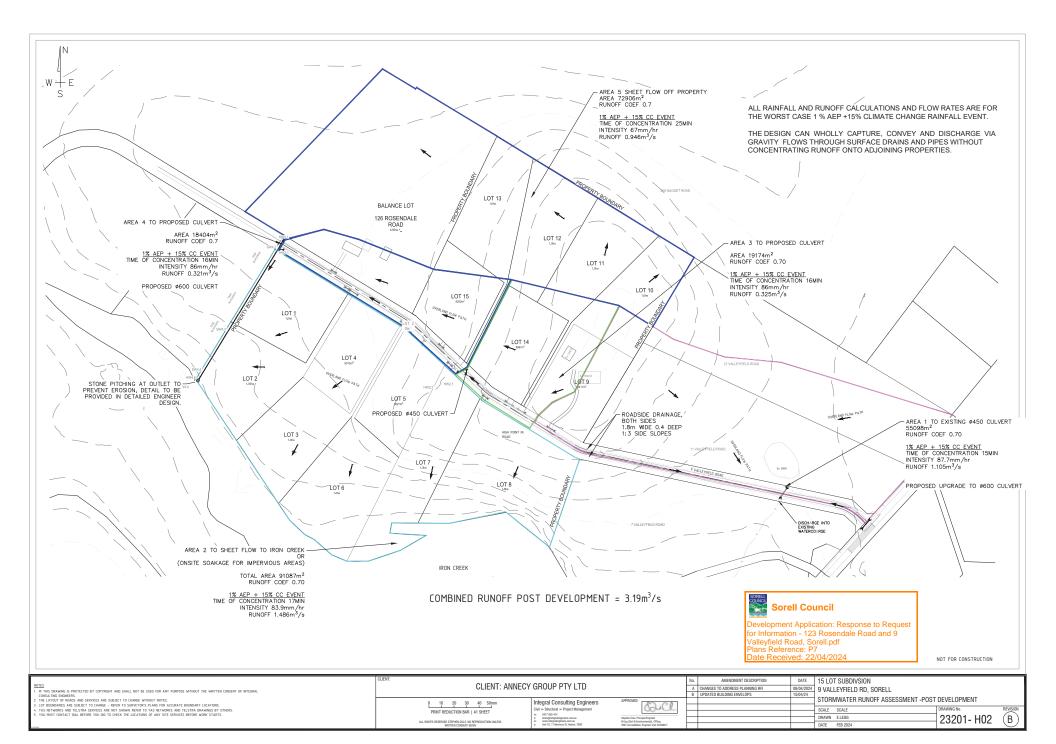

EDITE 1 e file dalvade se protititet by compresent and small not be used for any parpose without the viritin company of integral corea, the benefits.	CLIENT: ANNEC	No. AMENDMENT DESCRIPTION A FOR PLANNING APPLICATION B CHANGES TO ADDRESS PLANNING RFI	01/02/2024	15 LOT SUBDIVSION 4 9 VALLEYFIELD RD, SORELL				
2 THE LAYONT OF RADES AND ERRYFETS AND ERRYFETS TO GAMMER WITHOUT HOTEL 1. DIE BOAMMERAN ERR STERENT GTO GAMME, HERER TO TAS KETVORSES TANK FOR ACLEMENTE BOUNDARY LOCATORS. 4. TAS KETVORSE AND TESTRA SERVICES ARE NOT SHOWN RETER TO TAS KETVORSES AND TESTRA FRANKKES BY OTHERS. 5. YOM INGT CANTAT DAL BEFORE YOU DO TO DECKY THE LOCATORS OF ANY SITE SERVICES REFORE VORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL REVIS STEMPS OTTHING C.C.L. IN DEPRODUCTION UNLESS WINTER CORESPONDENT	Integral Consulting Engineers Civil © Structural © Project Management © 017 850 474 © Memolyphengenas com as © www.sityphengenas.com as © www.sityphengenas.com as	APPROVED: Sopher Cole, Principal Expresent 8 forg (Cole & Environmende, Offing with Accountables: Expresent Cole (CE000 1			ROAD CROSS SECTIONS CH780-801 SCALE 1:100 DRAWN ELEGG DATE FEB 2024	DRAWING No. 23201- C15	REVISION

Sorell Council

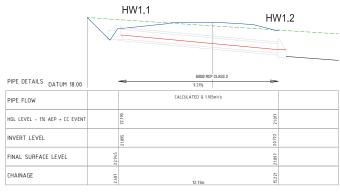
Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

LONGSECTION - Proposed Road SCALES: HORIZONAL 11000 VERTICAL 11000




LONGSECTION - Proposed Road SCALES: HORIZONAI100000 VERTICA1100000

Sorell Council


Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

NOTES 1. © THE SEAVANCE & MODIFIETD BY COPYREMT AND SHALL NOT BE USED FOR ANY PARPOSE WITHOUT THE WRITTEN CONSENT OF INTERNAL CONSENT FOR INDIRATES.	CLIENT: ANNECY	GROUP PTY LTD		No. AMENDMENT DESCRIPTION A FOR PLANNING APPLICATION	DATE 01/02/2024	o Willer Hield Hid, Goniele		
2. THE LAYOU OF RADES AND ERVECTS AND ESUBLICT TO CAMMENT WHITHOUT NOTICE. 3. LOT BOOMMENT AND STRESS THE STRESS - MERRIT DISAYUPCES PANK FOR ACCURATE BOUNDARY LOCATORS. 4. LAS BETWERKS AND TESTING SERVICES ARE NOT SHOWN REFER TO TAS NETVORUS AND TESTINA DRAWNEGS BY OTHERS. 5. YOU MUST CONTACT DAL BEFORE YOU DIG TO CHECK THE LOCATORS OF ANY SHE SERVICES BEFORE MORE STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL REVIS SEEREDS STERMES (CLE IN REPROCUTION LESS WATTIS CORRECT ON A	Integral Consulting Engineers Civil => Structural => Project Management == 0417 00.014 == terministry interiment, nom.au == terministry interiment, Photo = term	APPROVED: Supher Cele, Principal Engineer 8 Eng (Evil & Environment), CPEng WET Accessitation: Engineer Cele CESsion 1			OVERALL ROAD LONGSECTION SCALE 1:1000 DRAWN ELEGG DATE FEB 2024	DRAWING NO. 23201- C16	

ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

HW2.2

STORMWATER PIPE 1 LONGSECTION

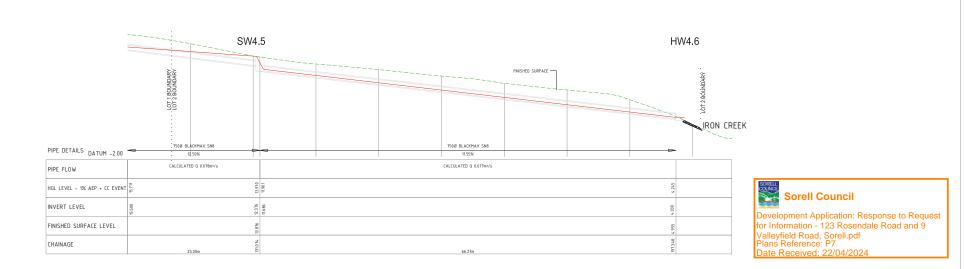
HW2.1

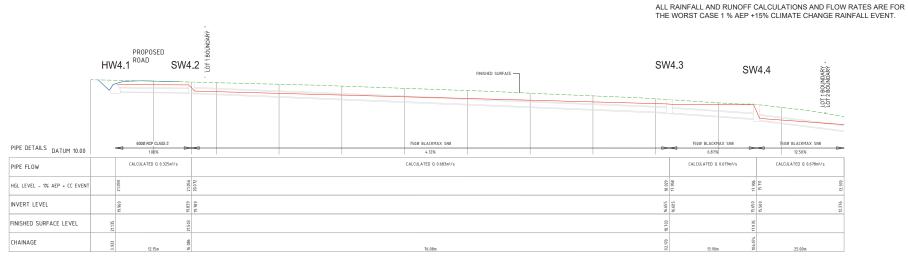
	C	Z		
PIPE DETAILS DATUM 32.00		-	375Ø RCP CLASS 2 12.48%	
PIPE FLOW			CALCULATED Q 0.321m3/s	
HGL LEVEL - 1% AEP + CC EVENT		35.985		34.672
INVERT LEVEL		767.SE		34.480
FINAL SURFACE LEVEL	36.719			35,405
COVER		0.04m		0.55m
CHAINAGE	0.926		10.52m	11450

			\setminus
PIPE DETAILS DATUM 16.00		3750 RCP CLASS 2	▶
PIPE FLOW		CALCULATED Q 0.360m ³ /s	
HGL LEVEL – 1% AEP + CC EVENT		21319	20.770
INVERT LEVEL		21.108	20.407
FINAL SURFACE LEVEL	22.033		21503
COVER		-0.25m	0.63m
CHAINAGE	0.952	6.13m	16.086
		T.0.1	

HW3.1

SW4.2


STORMWATER PIPE 3 LONGSECTION

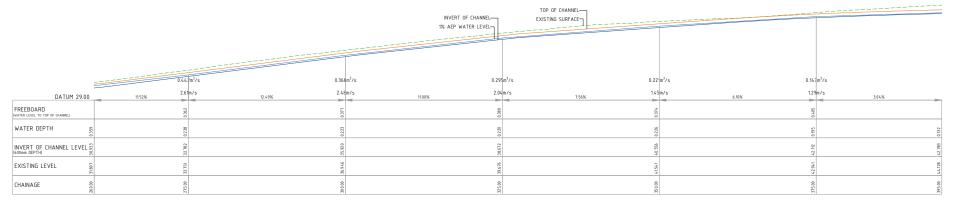

Sorell Council

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

EDITE 1 © THE DAVAND S PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONCERN OF INTEGRAL DOWNLY THE DAVANDES.	CLIENT: ANNE	CY GROUP PTY LTD		No.	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	DATE 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL	NTION	
2. THE LAYOU OF RADES AND ESPIRETS AND ESPIRET TO CAMARE WHITOUT NOTE: 1. DID BOUNDMENDER SERVERTS AND ESPIRETS DESIGNED SANS FOR ACCOUNTE BOUNDARY LICATORS. 4. TAS BETWEENS AND TELSTAR SERVERS ARE NOT SHOWN, REVER TO TAS RETVORES AND TELSTAR ADAMAGE BY OTHERS. 5. YOM HILT LOWICHT DAL BEFORE YOU DO TO LICKY THE LICATORS OF ANY SHE SERVERS BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL PRINT RESERVE STERVEN COLL IN GREPORTON UNLESS WITTEL CORPUS HAR	Integral Consulting Engineers Civil => Structural => Project Management =: 0417 bits 0.44 =: bitsonglingspangingspangings =: bitsonglingspangingspangingspangings =: bitsonglingspangings	APPROVED: Displan Cole, Principal Degreer 8 biog (Cole & Diversional), CPEro 1077 Academic - Explaner Cole CE3000 T				STORMWATER PIPES 1, 2 & 3 HGL LONGSE(SCALE 1.200 DRAWN ELEGG DATE FEB 2024	DRAWING NO. 23201- H03	REVISION

NOTES 1. © THIS GRANDE & FROTECTED BY COPYREMI AND SHALL NOT BE USED FOR ANY PREPOSE WITHOUT THE WRITEN CONSIST OF INTERNAL CORRAL THE BURNERIES.	CLIENT: CLIENT: ANNEC	Y GROUP PTY LTD		No.	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
2. THE LAYOUT OF RANDS AND STRYETS ARE SUBJECT TO CHARME WITHOUT MOTEL 3. UTO BROADWARE ANS SUBJECT TO LAWARE REPERTO SUBJECTIVES AND REPERTO SUBJECTIVES AND REPERTO SUBJECTIVES AND 4. TAS INFORMES AND TELTERS SERVETS ARE IND' SUMAIR BETER TO TAS INT FORMER AND TELTERS AND ANALOSE BY OTHERS 5. YOU MUST CONTACT DAL BEFORE YOU DO TO CHECK THE LOGATORS OF ANY SITE SERVESE BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHT RESINGS STENDER CLE. IN GRANDACTION UNLESS MICHTEN CORRENT NORMAN	Integral Consulting Engineers Divil = Structural = Project Management = 0477800474 = Same@pandpandpandpandpandpandpandpandpandpand	APPROVED: Displet Cole, Principal Engineer 8 Eng (Enk & Environmental), CPEng 1077 (Cole) Cole (2000 T			STORMWATER PIPE 4 HGL LONGSECTION SCALE 1.200 DRAWN ELEGG DATE FEB 2024	^{drawing no.} 23201- H04	REVISION

STORMWATER PIPE 2 LONGSECTION

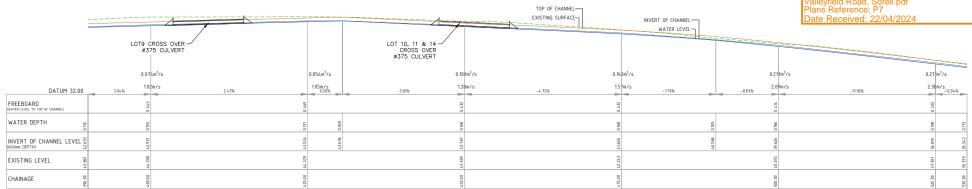

Sorell Council De-

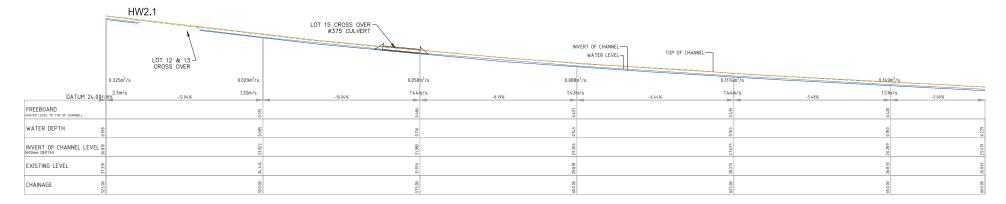
NOT FOR CONSTRUCTION

		INVERT OF CH	IANNEL TOP OF CHANNEL	CHANNEL TO BE SH	APED TO _ Date Received: 22/04/2024
		INVERT OF CH 1% AEP WATER	LEVEL	DIRECT FLOW INTO	- PROPOSED #600 CULVERT
	0.074 m	³ /s 0.147m ³	/s 0.221m		1.105m ⁴ /s
DATUM 19.00	-7.66% 1.37m	-6.63%	s	-6.14%	13.22% -32.38% 24.07% -0.21% -0.63%
FREEBOARD	9970	92 77 0	0.399	0.231	6410
WATER DEPTH SL	0.134	7410	0.201	6.9€0	0115
INVERT OF CHANNEL LEVEL	29.616	27.919	8; 11	607'72	21.706 22.32.7 22.32.7 22.32.7 22.32.7 22.32.7 22.255
EXISTING LEVEL	30.190	28.393	26.703	24, 960	22.661
CHAINAGE	00 55	50.00	00 ST	00.00	155.00 155.00

				INVERT OF CHANNEL	TOP OF CHANNEL		
DATUM 20.00		84m ³ /s 55m/s	0.737m ³ /s 7.53% 2.7m/s	0.653m ³ /s 7.78% 2.48m/s	0.589m³/s 7.43% 2.39m/s	0.51(m ³ /s 9.64% 2.6 ⁴ m/s	
FREEBOARD (WATER LEVEL TO TOP OF CHANNEL)	-0.05%	107/4	7.33A 860 00	1.104	143/4	7.84%	11.32.%
WATER DEPTH	2010	0.308	0.302	0.299	0.286	0.253	0.341
INVERT OF CHANNEL LEVEL	2 2 2	22,490	23.626	25574	544.5	29.88.8	31527
EXISTING LEVEL		14 522	24,210	26.477	28.277	30.6.20	32.442
CHAINAGE	Q 4	00.024	15.00	200.00	225.00	25.0.00	265.00

ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

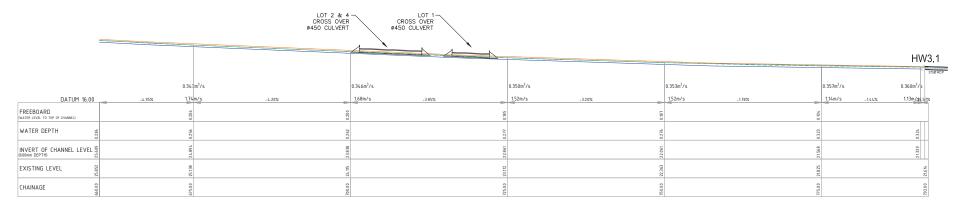

NUTLS 1. © I NG SALANG SE PROTETES BY CRYTREAT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSENT OF INTEGRAL CORREL THE DEMORTES.	CLIENT: ANNE	CY GROUP PTY LTD		No. AMENDMENT DESCRIPTION A CHANGES TO ADDRESS PLANNING RFI	DATE 09/04/2024	o where meeting, contere		
2. THE LAYOUT OF ROADS AND SERVICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. 3. LOT BOUNDARIES ARE SUBJECT TO CHANGE - INFERT OT SUPPORTING F2 HAS FOR ACCURATE BOUNDARY LOCATIONS.	0 10 20 30 40 50mm	Integral Consulting Engineers	APPROVED:			ROAD DRAINAGE HIGH SIDE SWALE HGL LON	NGSECTION CH0.00 - 395	
4. TAS NETWORKS AND TELSTRA SERVICES ARE NOT SHOWNL REFER TO TAS NETWORKS AND TELSTRA DRAWINGS BY OTHERS.	PRINT REDUCTION BAR A1 SHEET	Civil ∞ Structural ∞ Project Management	OQUICE			SCALE 1:200	DRAWING No.	REVISION
5. YOU MUST CONTACT DIAL BEFORE YOU DIG TO CHECK THE LOCATIONS OF ANY SITE SERVICES BEFORE WORK STARTS.	ALL RIGHTS RESERVED STEPHEN COLE. ND REPRODUCTION UNLESS	m: 0417 650 474 e: team@integralengineers.com.au w: www.integralengineers.com.au	Stephen Cole, Principal Engineer 8 Eno (Coll & Environmental), CPEno			DRAWN E.LEGG	23201-H05	(Δ)
	ALL NIGHTS RESERVED STEPHEN COLE. NO REPHODOCITION UNLESS WRITTEN CONSENT ONEN	a: Unit 10, 11 Monison 52, Hobart, 7000	WST Accreditation: Engineer Civil CC5900 T		1	DATE FEB 2024	20201-1100	UT.


SORELL **Sorell Council**

Development Application: Response to Request for Information - 123 Rosendale Road and 9 Valleyfield Road, Sorell.pdf Plans Reference: P7 Date Received: 22/04/2024

NOT FOR CONSTRUCTION

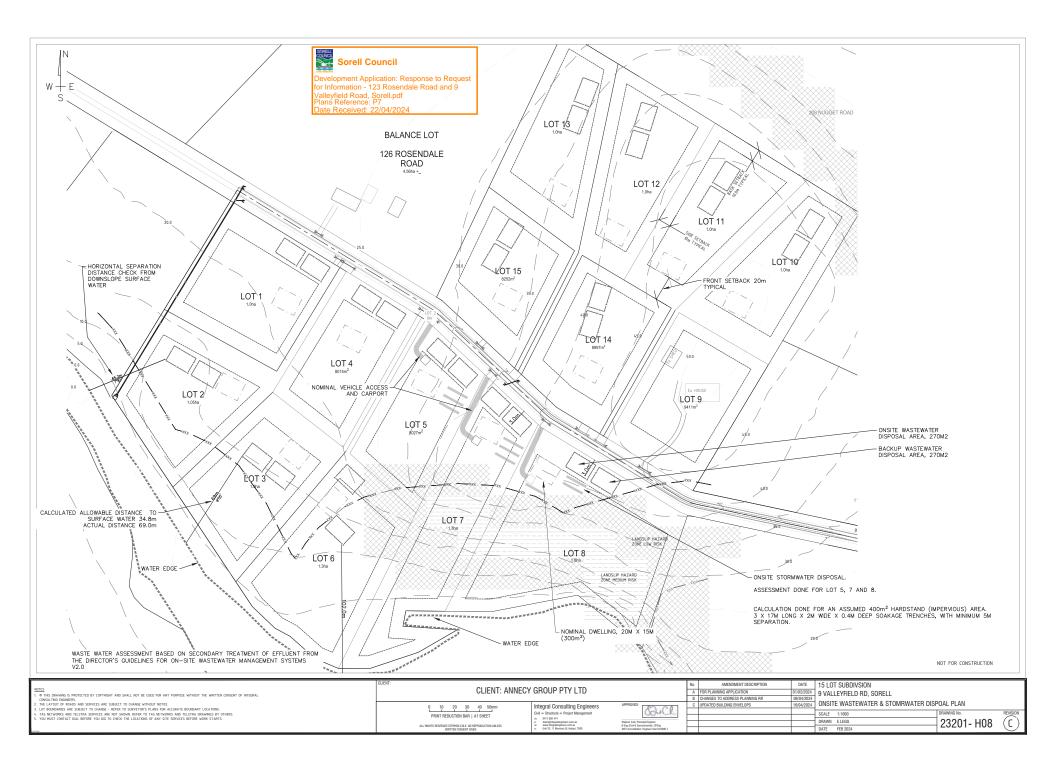
A



Ξ			INVERT OF CHANNEL	TOP OF CHANNEL						
										HW4.1
	0.175m ³ /			0.233m ³ /s		0.263n ³ /s		0.292m ³ /s		0.321m ³ /s
DATUM 16.00	-5.00% 1.44m/s	-4.16%	n/s _3.91%	1.37m/s	-3.15%	1.42m/s	-1.92%	1.07m/s	-1.43%	1.12 n/s _35.92%
FREEBOARD (WATER LEVEL TO TOP OF CHANNEL)	0.398	7 8 °C 0 '0		0.36.2		0.35.0		0.298		
WATER DEPTH	0.202	0.2 16		0.238		0.250		0.302		0.311
INVERT OF CHANNEL LEVEL	25.018	23.963		22.963		22 164		21633		21331
EXISTING LEVEL	22.635	24, 507		23.494		22.664		22.079		
CHAINAGE	675.00	00.00		725.00		75 0. 00		775.00		800.00

ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

NOTES 1. • In as graving is protected by copyright and shall not be used for any purpose without the written consist of integral consist free densets.		GROUP PTY LTD		No. A	AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	15 Lot Subdivsion 9 Valleyfield RD, Sorell Road Drainage high side Swale HGL Loi	
2. THE LAYOUT OF MALES AND SERVICES ARE SUBJECT TO COMPARE WITHOUT NOTE: 1. LOT BOULDANES AND ELISTIA SERVICES ARE NOT SHOWN RETER TO IAS NET FOR ACCOUNT ELISTIA BOUNDARY LOCATIONS. 4. LAS METADORES AND ELISTIA SERVICES ARE NOT SHOWN RETER TO IAS NETIORISMS AND ELISTIA BOUNDARY ELISTIA 5. TOU MUSIC CONTACT DAL, REFORE TOU DO TO CHEM THE LOCATIONS OF ANY SITE SERVICES BUPGINE WOOK STAMTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR A1 SHEET ALL RIGHT RESURCED STIPHER OCCE. IN APPROXIMATION UNLESS WRITTER COLLECTION UNLESS	Integral Consulting Engineers Civil a Structural a Project Management of 17 20 474 is Intendfordingstemptics.com.au www.integratingstemptics.com.au is Unit 10, 11 Marrison 51, Hobart, 7000	APPROVED:			SCALE 1200 DRAWN ELEGG DATE FEB 2024	DRAWING No. 8 23201- H06 (


SW2	c، ه375 ع.2	LOT 7 - ROSS OVER 5 CULVERT					
1960 Kgr			TOP OF CHANNEL EXISTING SURFACE WATER	LEVEL	LOT 3 & 6 CROSS OVER #450 CULVERT		
	-7.14%	0.325m ³ /s -10.13%	0.329m ³ /s -8.22%	0.332m ³ /s -6.62%	0.336m ³ /s _5.42%	0.339m ³ /s4.95%	-4.20%
DATUM 16.00		2.38m/s	2.22m/s	2m/s	1.8m/s	1.88m/s	
FREEBOARD	5 PC	6 6 0	49	5		0.214	
WATER DEPTH	0.2%	222	9770	223		0.247	0.256
INVERT OF CHANNEL LEVEL	6 92 82 82	n e e m	6771	2.3.19 t		26.141	24.894
EXISTING LEVEL		27 23 29 20 20 20 20 20 20 20 20 20 20 20 20 20	11.280	96.2 7.2		26.346	25.138
CHAINAGE 8	000	22000	0.01	00000		65 0.00	675.00

ALL RAINFALL AND RUNOFF CALCULATIONS AND FLOW RATES ARE FOR THE WORST CASE 1 % AEP +15% CLIMATE CHANGE RAINFALL EVENT.

NOTES 1. © THIS DRAWING IS PROTECTED BY COPYRIGHT AND SHALL NOT BE USED FOR ANY PURPOSE WITHOUT THE WRITTEN CONSINT OF INTEGRAL	CLIENT: CLIENT: ANNECY		AMENDMENT DESCRIPTION CHANGES TO ADDRESS PLANNING RFI	DATE 09/04/2024	15 LOT SUBDIVSION 9 VALLEYFIELD RD, SORELL		
CONCULTING DEMARTIES. I THE LAYOF BARKS MAD STRUCTS AND SAME TO TAXABLE WINDOW FORCE. I THE LAYOF BARKS MAD STRUCTS AND SAME STRUCTS AND STRUCTURE DOMALARY LOCATIONS. A FAS REFLORES AND TILSTIN BERVELS ARE NOT SHOWN, REFER TO TAS REFLORES AND TILSTIN DRAWING: BY OTHERS. 4. YOU MUST CONTACT DAL BEFORE YOU DIS TO CREE THE LOCATIONS OF ANY SITE SERVERS BEFORE WORK STARTS. 5. YOU MUST CONTACT DAL BEFORE YOU DIS TO CREE THE LOCATIONS OF ANY SITE SERVERS BEFORE WORK STARTS.	0 10 20 30 40 50mm PRINT REDUCTION BAR AI SHEET ALL BATH INTERNATION DATE, LA DEPENDENTIAL AND ALL A	Integral Consulting Engineers Civil © Structural © Project Nangement © 047.00 4/4 © Intern@leftpreingings.com.au © www.integraingings.com.au © Livit Co, 11 Manuse 82, Hobar, 7000	APPROVED: Staphen Cole, Principal Engineer Bitting Cole & Konsonnettal, Christ WST Acconstitution: Engineer Cold COSD00 T				ROAD DRAINAGE LOW SIDE SWALE LONGSECTION CH550-801 SCALE 1200 DRAWN ELGO DRAWN ELGO DRAWN ELGO DRAWN ELGO

Attachment to item number 5.2 -

Exhibition documents & draft amendment

Applicant:	Sorell Council
Proposal:	Planning Scheme Amendment - Waterway and Coastal
	Protection Area Overlay
Site Address:	Whole of municipal area
Planning Scheme:	Tasmanian Planning Scheme Sorell (TPS-S)
Relevant Legislation:	Part 3B of the Land Use Planning and Approvals Act 1993
	(LUPAA)
Reason for SPA meeting:	No delegated authority for a planning scheme
	amendment

5.2 PLANNING SCHEME AMENDMENT AM-SOR-5.2024.1.1

RECOMMENDATION

- a. That pursuant to Section 40D(a) of the Land Use Planning and Approvals Act 1993, the Planning Authority prepare Amendment AM-SOR—5/2024.1 to the Sorell Local Provisions Schedule to update the waterway and coastal protection area as shown in Attachment 1.
- b. That pursuant to Section 40 of the *Land Use Planning and Approvals Act 1993,* AM-SOR-5-2024.1.1 is certified as meeting the LPS criteria.
- c. That in accordance with Section 40G of the *Land Use Planning and Approvals Act 1993,* the Planning Authority places the amendment on public exhibition for a period of 28 days.

Executive Summary

The waterway and coastal protection area is triggered based on a table in the planning scheme that specifies buffer distances to various types of waterways. A mapped overlay is also used to visually assist. More specifically, the table overrides the map in instances of inconsistencies. The purpose of the amendment is to provide the best visual representation of where the waterway and coastal protection area (WCPA) applies. The amendment does so by applying the best available data and removing some existing anomalies.

The purpose of the report is to consider whether to prepare and certify the amendment. In considering the request and certification, a range of matters must be considered including the Schedule 1 objectives of the *Land Use Planning and Approvals Act 1993* (LUPPA). The Schedule 1 objectives require community consultation and yet, strangely, the certification must occur prior to any public consultation.

The draft amendment appears capable of being in accordance with the requirements of LUPAA and it is recommended that it be prepared and certified in order to allow a full assessment based on community consultation.

17

The social, economic and environmental benefits of the proposal are:

- Increased certainty for the community and applicants regarding where the overlay applies;
- Improved efficiencies and effectiveness in the planning processes;
- Reduced risks of errors or omissions in the planning process; and
- Improved protection of the environmental values of waterways by mapping the current alignment of waterways, wetlands and high water mark.

Like other spatial information used in planning scheme overlays, the proposed WCPA is a point in time approximation of conditions on ground and is limited by the available data.

The report provides details of the amendment and outlines the strategic outcomes sought, having regard to matters of local, regional and then State importance. The report ends with a discussion of the degree of compliance with legislative requirements.

If prepared and certified, the following two outcomes must occur:

- The amendment is exhibited for 28 days, and
- The Tasmanian Planning Commission (the Commission) will decide whether to approve the amendment, approve the amendment with modifications or reject the amendment.

Any representations to the exhibited amendment will be considered at a future Planning Authority meeting, where modifications can be recommended in response to the representations and for the consideration of the Commission.

The Commission will assess and decide on the amendment, based on the issues raised in the representations and the outcomes of any hearings it may hold.

PROPOSED PLANNING SCHEME AMENDMENT

The amendment seeks to update the Waterway and Coastal Protection Area (WCPA) overlay under C7.0 Natural Assets Code.

The current WCPA is based on a guidance map provided by the State Planning Office (SPO) (formally the Planning Policy Unit) originally prepared for the interim planning schemes. Since the guidance map was prepared, the alignment of high water mark, watercourses and wetlands in numerous areas of the LGA have been revised. It is understood that the SPO has no intent to update the various state-wide guidance maps used.

18

Most mapped overlays are the 'trigger' for the relevant planning scheme rules. However, the Natural Assets Code includes an overriding clause whereby, in the event of an inconsistency between a mapped watercourse and the actual position on ground, the actual position on ground overrides and triggers the relevant planning scheme rules with Table C7.3 specifying the spatial extent of the WCPA. Table C7.3 is complex and in reality all parties in the planning process are dependent on the mapped overlay.

The proposed WCPA is based on:

- 1. A new coastline (high water mark) data set
- 2. General revisions to the alignment of waterways
- 3. Updated wetland data
- 4. Extending the coastal protection area to a 40m distance to *both* sides of mean high water rather than to the shore side only to enable consideration of works in the tidal zone and to manage changes in mean high water mark over time.

Issues with the existing waterway and coastal protection area overlay

Misalignment with the coastline

Figures 1 and 2 show instances where the current WCPA does not align with the coastline. This is likely due to errors in the original guidance mapping that were not identified and rectified during the preparation of the interim or current planning scheme.

Figure 1. Extract of existing WCPA at Midway Point

19

Figure 2. Extract of existing WCPA at Penna

Misalignment with waterways

Figure 3 shows an instance where the mapped WCPA (shown in green) has an alignment that is not consistnet with the hydrographic line (blue) data on LISTmap.

Figure 3. Existing WCPA (hatched) versus LISTmap hydrographic lines data

Non-compliance with the class 4 watercourses classification in prescribed zones

Table C7.3 lists four different types of watercourses; class 1, 2, 3 and 4. Class 1 is the major watercourse and is defined as being a named creek or river. Class 4 is the minor classification. Class 2 and 3 are intermediate and are defined by the size of the catchment. The width of the WCPA to both sides of a watercourse is 40m for class 1, 30m for class 2, 20m for class 3 and 10m for class 4. The classification of watercourses was taken from the forest practices systems.

Table C7.3 specifies that within 13 different zones, such as the General Residential Zone or Low Density Residential Zone, all watercourses are classified as class 4 and have a 10m wide WCPA. This classification is irrespective of whether the watercourse is a larger class 1, 2 or 3 stream. The current WCPA does not show the restriction to a class 4 stream in these specified zones. Figure 4 shows one such instances for Sorell Rivulet in which the WCPA is mapped as a class 2 watercourse (60m width in total) whereas Table C7.3 defines the watercourse as a class 4.

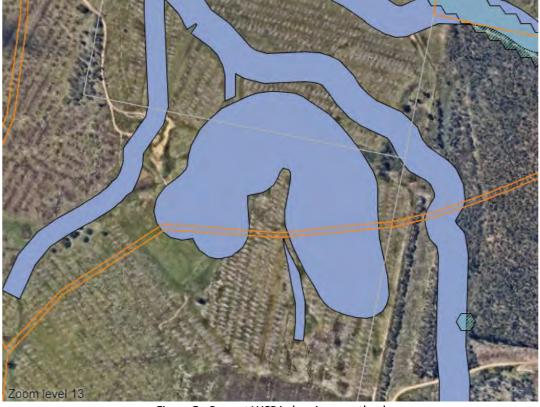



Figure 4. A class 4 watercourse (due to being within the General Residential Zone and Low Density Residential Zone) is mapped as a larger class 2 watercourse.

Mapped wetlands that do not exist

Figure 5. Current WCPA showing a wetland.

Figure 6. Existing conditions as at November 2023 showing recent forestry clearing and no signs of a wetland.

Updated coastline

The WCPA applies from the mean high water mark. This is a moving feature and often updated.

Figure 7. Latest coastline data (blue) versus current WCPA (green)

General presentation issues

Figure 8 is one example, of many, of gaps in the current WCPA that are artefacts of the Geographic Information System processing.



Figure 8. Gap in the current WCPA.

Class 1 (named watercourses) mapped as lower class streams

Table C7.3 requires all named watercourses on the 1:100,000 topographic map sheets produced by the Tasmanian Government to be mapped as class 1 watercourses. There are various instances where named watercourses are mapped as lower class.

Figure 9. Little Boomer Creek not mapped as a class 1 watercourse.

Data and Method in the proposed WCPA

Inputs

- LISTmap Hydline Layer
- LISTmap Hydarea
- LISTmap CFEV river section catchments
- LISTmap CFEV Saltmarsh
- LISTmap CFEV Wetlands
- LISTmap Coastline (MHWM)

Processing of mean high water mark

- Remove islands, tidal, inland features
- Apply 40m buffer in 10 segments in QGIS

Processing of wetland

- Select wetlands and flats from Hydrographic area layer in LISTmap
- Apply 40m buffer in 10 segments in QGIS

Processing of streams

- Select named features, combine segments, code Class 1 and buffer 40m in 10 *segments* in QGIS. Verify named segments match 1:100,000 topo sheet (scanned map in LISTmap)
- Code remaining Class 4
- Classify class 2 and 3 based on catchment size using CFEV river segments for catchment size (join attributes by location (one to

many, intersect, overlap, contain, within, touches) to catchment size)

• Verify by comparison to existing waterway overlay

Application of class 4 streams due to zoning

- Split layer by relevant zones and reclassify.
- Streams: Change all within Table C7.3 (b) zones to class 4
- Tidal Cut at the zone boundary

Final revisions

- Remove artificial watercourses
- Apply symmetrical difference and manually review
- Remove small gaps and other processing artifacts
- Manually add Marchweil Marsh and wetlands at Carlton and Primrose Sands from old WCPA as features not otherwise mapped

Draft Amendment

The draft amendment documents are included in **Attachment 1** – Amendment Documents.

An explanatory document which provides some more background information about the amendment, the current policy position and outlines the controls and why they have been included is in **Attachment 2** – Explanatory Document. This document provides a more 'accessible' overview of the PAC SAP beyond the statutory requirements that must be met under LUPAA.

The Natural Assets Code

The Natural Assets Code addresses native vegetation, coastal refugia and waterway and coastal protection.

The provisions related to a WCPA address impacts both in stream and to the adjacent land such as siltation, native vegetation and instream habitat. The Code includes a definition of waterway values being "the values of watercourses and wetlands derived from their aquatic habitat and riparian vegetation, physical elements, landscape function, recreational function and economic function." The term waterway values is not otherwise used in the Code but does summarise the scope.

ASSESSMENT AND STRATEGIC OUTCOMES

Legislation

To be approved, a draft amendment must comply with the LPS criteria that are set out in LUPAA as follows:

(2) The LPS criteria to be met by a relevant planning instrument are that the instrument –

- (a) contains all the provisions that the SPPs specify must be contained in an LPS; and
- (b) is in accordance with section 32; and
- (c) furthers the objectives set out in Schedule 1; and
- (d) is consistent with each State policy; and
- (da) satisfies the relevant criteria in relation to the TPPs; and
- (e) as far as practicable, is consistent with the regional land use strategy, if any, for the regional area in which is situated the land to which the relevant planning instrument relates; and
- (f) has regard to the strategic plan, prepared under section 66 of the Local Government Act 1993, that applies in relation to the land to which the relevant planning instrument relates; and
- (g) as far as practicable, is consistent with and co-ordinated with any LPSs that apply to municipal areas that are adjacent to the municipal area to which the relevant planning instrument relates; and
- (h) has regard to the safety requirements set out in the standards prescribed under the Gas Safety Act 2019.

Attachment 2 provides a detailed assessment against each relevant criteria.

LUPAA provides a two-step process for planning scheme amendments. The first step under section 40D outlines how and when a planning authority is to prepare a draft amendment. Section 40F is step 2 and provides that once a planning authority has determined to prepare a draft amendment it must either certify that as meeting the LPS criteria or modify the draft amendment until it meets the LPA criteria and then certify.

Regional Strategy and Policy

For the amendment to be approved, compliance with the *Southern Tasmania Regional Land Use Strategy 2010-2035* (STRLUS) must be demonstrated. **Appendix 1** provides a detailed assessment of the amendment against the relevant STRLUS policies.

State Strategy and Policy

Appendix 1 provides a detailed assessment of the amendment against the relevant State policies.

CONCLUSIONS ON THE AMENDMENT

For the above reasons, the amendment is consistent with the objectives and other requirements of the *Land Use Planning and Approvals Act 1993*.

Attachments: Attachment 1- Draft Amendment Attachment 2 – Detailed LPS Criteria Assessment

TASMANIAN PLANNING SCHEME - SORELL

PLANNING SCHEME AMENDMENT – SORELL LOCAL PROVISIONS SCHEDULE

AM-SOR-5-2024.1.1

Pursuant to the Land Use Planning and Approvals Act 1993

Location

Whole of Local Government Area

Description

Replace with waterway and coastal protection area as shown on overlay maps WCPA 11k (pages 1 to 16) and WCPA 55k (pages 1 to 6)

29

Attachment 2 Statutory

Assessment – Response to criteria requirements for Local Provisions Schedule under LUPAA

Section 34(2) of LUPAA requires a relevant planning instrument to meet all of the following criteria.

(a) contains all the provisions that the SPPs specify must be contained in an LPS

The proposal complies with the SPP requirements for an LPS as set out in clause LP1.0 and Appendix A of the SPPs.

(b) is in accordance with section 32

This section identifies the technical aspects of a LPS such as inclusion of zone maps and overlays, and what additional local provisions can be included if permitted to do so under the SPPs, to add to, modify or override the SPPs. This amendment is consistent with this section.

(c) furthers the objectives set out in Schedule 1 of LUPAA

Assessment of the amendment against the Schedule 1 objectives is provided in the following table.

Part 1 Objectives		Comment
<i>(a)</i>	to promote the sustainable development of natural and physical resources and the maintenance of ecological processes and genetic diversity	The amendment furthers this objective through an updated overlay that best reflects the spatial extent of the waterway and coastal protection area.
<i>(b)</i>	to provide for the fair, orderly and sustainable use and development of air, land and water	The updated overlay will assist in achieving fair, orderly and sustainable use through assisting in when and how the associated code is applied to individual applications.
(c)	to encourage public involvement in resource management and planning	If certified, the draft amendment will be subject to public exhibition.

(d)	to facilitate economic development in accordance with the objectives set out in paragraphs (a), (b) and (c)	The updated overlay will assist in achieving fair, orderly and sustainable use through assisting in when and how the associated code is applied to individual applications.
(e) to promote the sharing of responsibility for resource management and planning between the different spheres of Government, the community and industry in the State Part 2 Objectives		This procedural objective has no bearing on the matter at hand.
(a)	to require sound strategic planning and co- ordinated action by State and local government	This procedural objective has no bearing on the matter at hand.
<i>(b)</i>	to establish a system of planning instruments to be the principal way of setting objectives, policies and controls for the use, development and protection of land	This procedural objective has no bearing on the matter at hand.
(c)	to ensure that the effects on the environment are considered and provide for explicit consideration of social and economic effects when decisions are made about the use and development of land	The updated overlay will assist in when and how the associated code is applied to individual applications.
(d)	to require land use and development planning and policy to be easily integrated with environmental, social, economic, conservation and resource management policies at State, regional and municipal levels	This procedural objective has no bearing on the matter at hand.

(e)	to provide for the consolidation of approvals for land use or development and related matters, and to co- ordinate planning approvals with related approvals	This procedural objective has no bearing on the matter at hand.
(f)	to promote the health and wellbeing of all Tasmanians and visitors to Tasmania by ensuring a pleasant, efficient and safe environment for working, living and recreation	Waterways are important to public health and wellbeing and, as such, the planning system recognizes waterways and seeks to regulate use and development. The updated overlay will assist in when and how the associated code is applied to individual applications.
(g)	to conserve those buildings, areas or other places which are of scientific, aesthetic, architectural or historical interest, or otherwise of special cultural value	Waterways have scientific and aesthetic values that are reflected in the updated overlay.
(h)	to protect public infrastructure and other assets and enable the orderly provision and co-ordination of public utilities and other facilities for the benefit of the community	The amendment will have no adverse impact on public infrastructure.
(i)	to provide a planning framework which fully considers land capability.	This procedural objective has no bearing on the matter at hand.

32

(d) is consistent with each State policy;

Assessment of the amendment against the current State policies is provided in the following table.

State Policy	Comment
State Policy on the Protection of Agricultural Land 2000 (PAL)	The waterway and coastal protection area applies to the Agriculture Zone. There are no exemptions for agriculture use or development within the WCPA. Therefore, clearing of vegetation for pasture or crops or construction of a building for an agriculture use would be subject to the code.
State Policy on Water Quality Management 1997 (SPWQM)	The associated Natural Values Code does consider point source discharge to waterways and in doing so supports application of this policy.
State Coastal Policy 1996 (SCP).	The WCPA applies to the coastal zone and supports application of this policy.

National Environmental Protection Measures

National Environment Protection Measures (NEPM) are automatically adopted as State Policies under section 12A of the *State Policies and Projects Act 1993* and are administered by the Environment Protection Authority.

The NEPMs relate to:

- ambient air quality
- ambient marine, estuarine and fresh water quality
- the protection of amenity in relation to noise (but only if differences in markets for goods and services)
- general guidelines for the assessment of site contamination
- environmental impacts associated with hazardous wastes
- the re-use and recycling of used materials.

Principle 5 of the NEPMs states that planning authorities 'that consent to developments, or changes in land use, should ensure a site that is being considered for development or a change in land use, and that the authorities ought reasonably know if it has a history of use that is indicative of potential contamination, is suitable for its intended use.

The WCPA and Natural Values Code support water quality.

(da) satisfies the relevant criteria in relation to the TPPs;

The Tasmanian Planning Polices have not been implemented.

(a) as far as practicable, is consistent with the regional land use strategy, if any, for the regional area in which is situated the land to which the relevant planning instrument relates;

The following considers the key elements of the Southern Tasmanian Regional Land Use Strategy 2010-2035 (STRLUS).

Relevant STRLUS strategies	Comment
Water Resources WR 1.3: Include setback requirements in planning schemes to protect riparian areas relevant to their classification under the Forest Practices System.	As noted earlier, the WCPA applies the Forest Practices System of watercourse classification. The amendment therefore directly supports this regional policy.
The Coast C 1.1 Ensure use and development avoids clearance of coastal native vegetation.	Consistent with the Natural Assets Code, the updated overlay applies to 40m of the mean high water mark and 100m of the Orielton – Pittwater Lagoon RAMSAR site. Removal of native vegetation within this area is regulated by the Natural Assets Code.

(e) has regard to the strategic plan, prepared under section 66 of the Local Government Act 1993, that applies in relation to the land to which the relevant planning instrument relates

The current municipal strategic plan is the *Strategic Plan 2019-2029 (March 2023 update)*. The amendment is consistent with the following objectives:

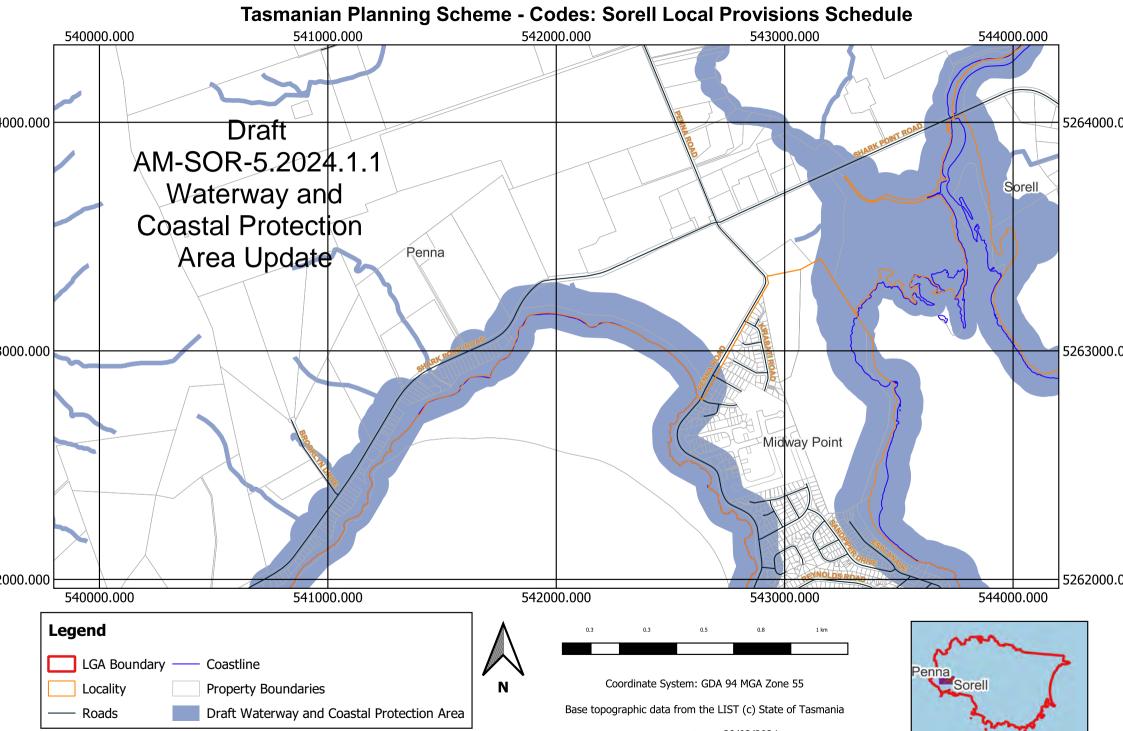
The Strategic Plan has four key objectives with success measures and delivery actions. Those relevant to the proposal are as follows:

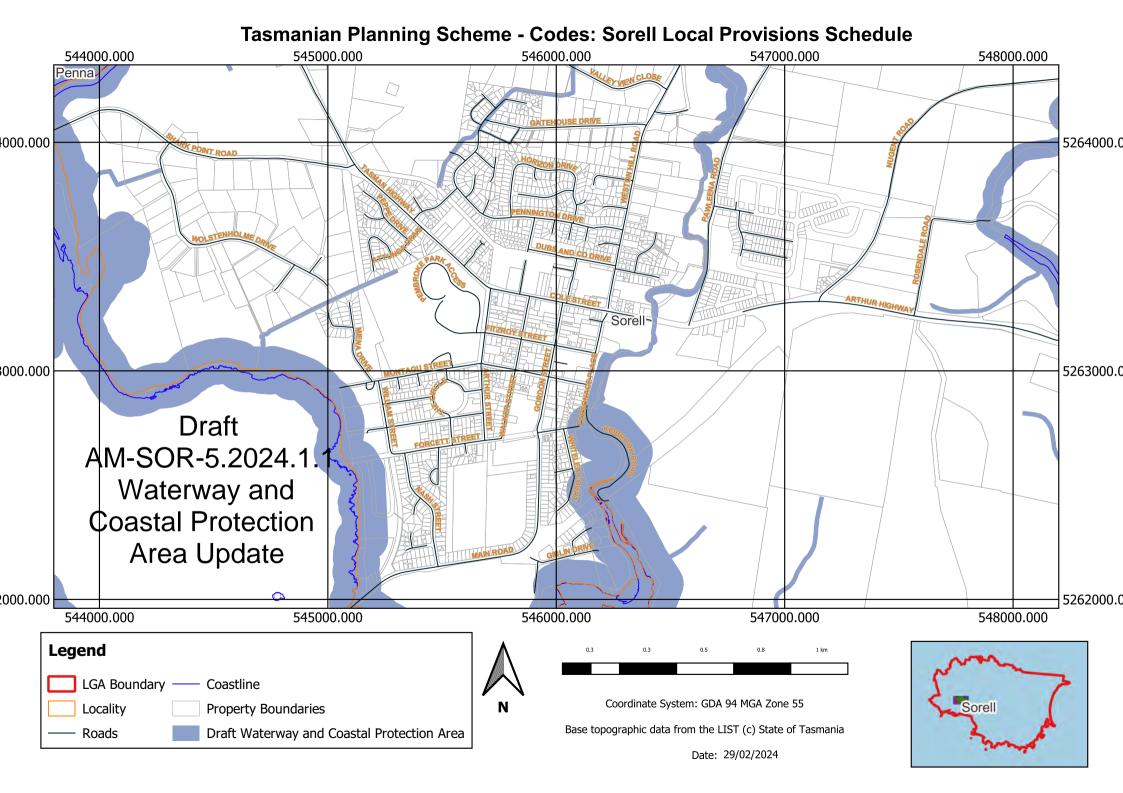
- Objective 1: To Facilitate Regional Growth
 - o Support the revision of the Southern Tasmania Regional Land Use Strategy.
- Objective 2: Responsible Stewardship and a Sustainable Organization
 - o Give consideration to the potential impacts of growth and developments.
 - Support sustainable environmental performance through responsible corporate behaviour, appropriate and achievable climate change mitigation and adaptation practices and continuing to meet our statutory obligations.
- Objective 3: To Ensure a Liveable and Inclusive Community
 - o Support the development of appropriate public access to coastal assets and the natural environment
- Objective 4: Increased Community Confidence in Council
 - Ensure decision making is consistent and based on relevant and complete information, and is in the best interest of sustainability and whole of community interest.
 - o Engage effectively with the community and other stakeholders, ensuring communication is timely, involving and consistent.

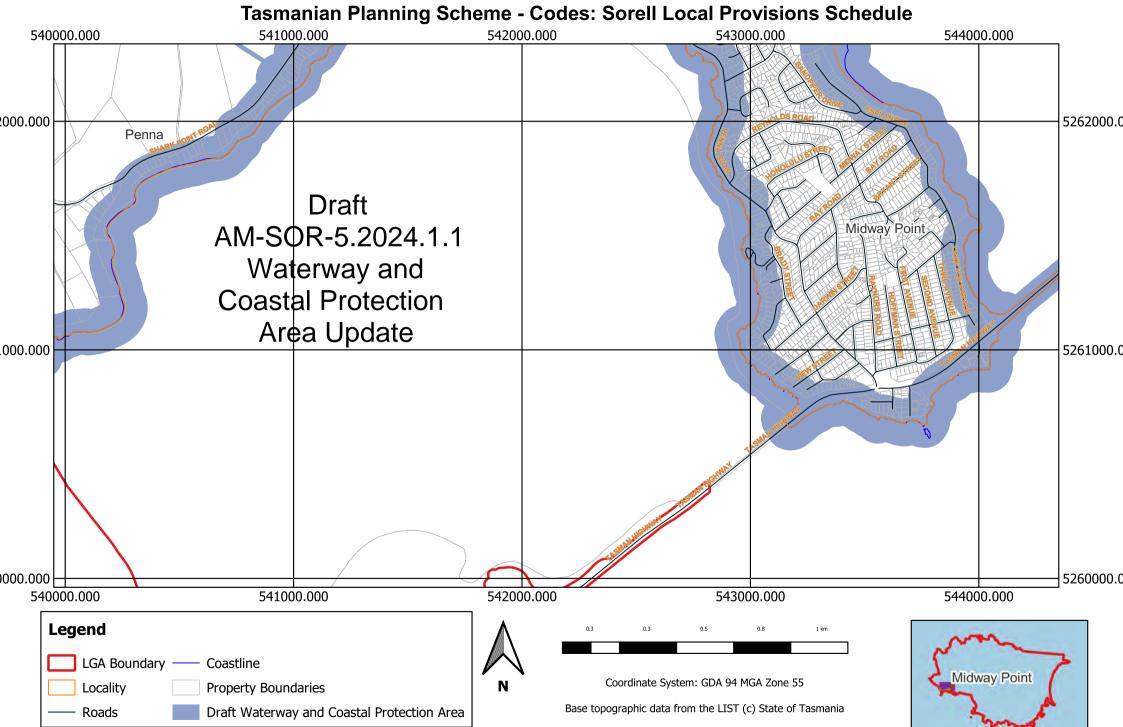
The updated WCPA is broadly consistent with Council's Strategic Plan in supporting decision-making around natural values.

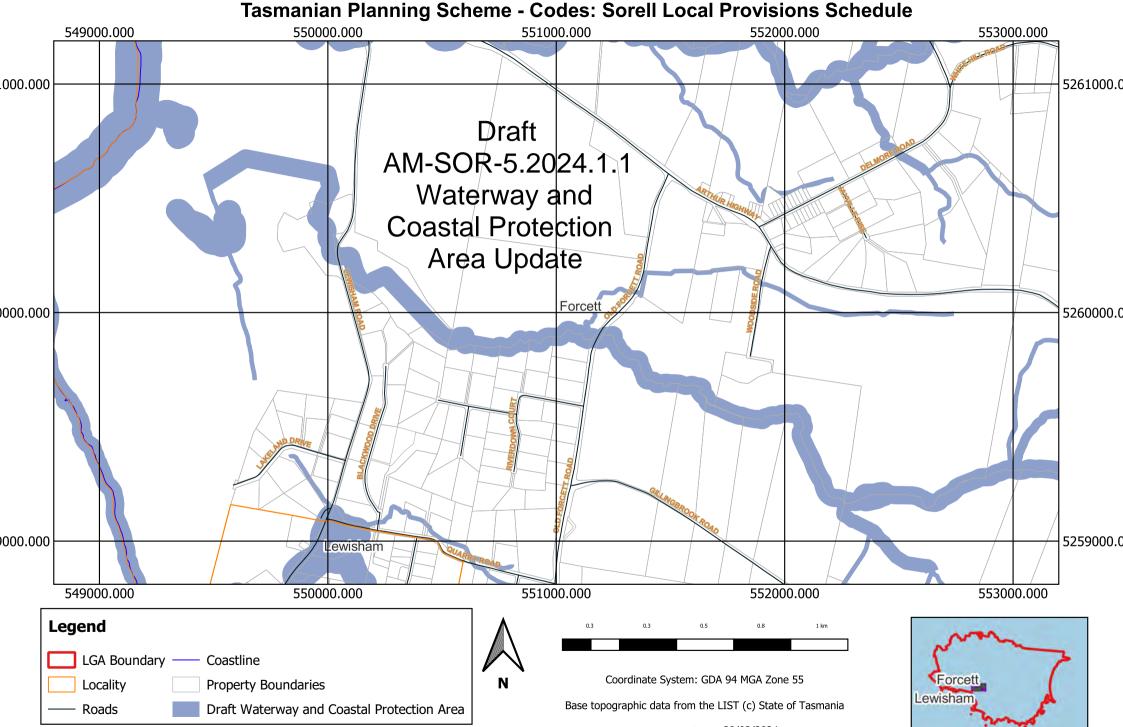
(f) as far as practicable, is consistent with and co-ordinated with any LPSs that apply to municipal areas that are adjacent to the municipal area to which the relevant planning instrument relates;

There are some inconsistencies in the WCPA at the boundary with Glamorgan Spring Bay associated with named watercourses that have not been classified as class 1 streams. It is not considered appropriate to match neighbouring planning schemes where the neighbouring planning scheme is not fully correct.

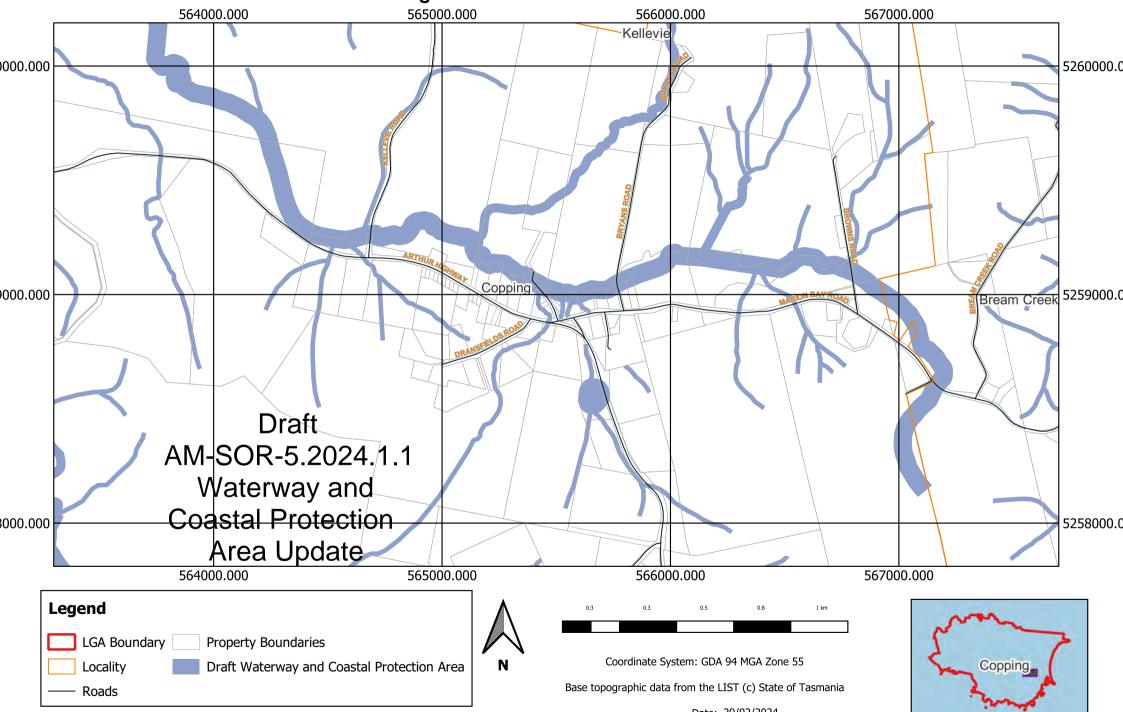

(g) has regard to the safety requirements set out in the standards prescribed under the.

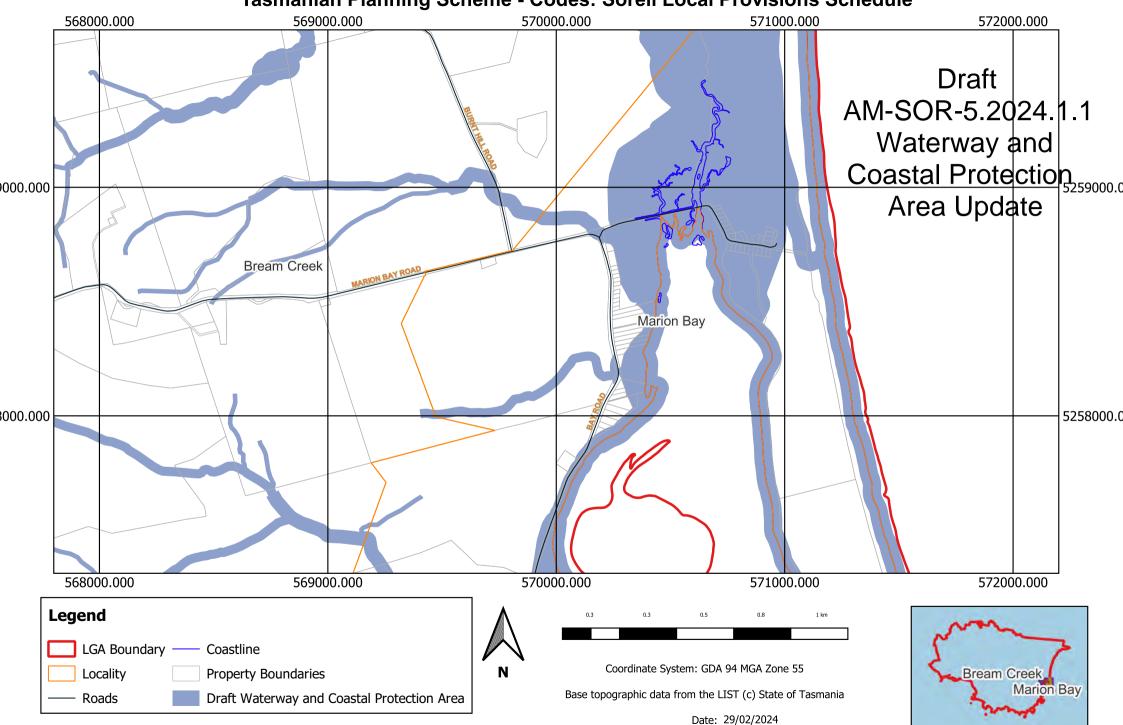

Not applicable.

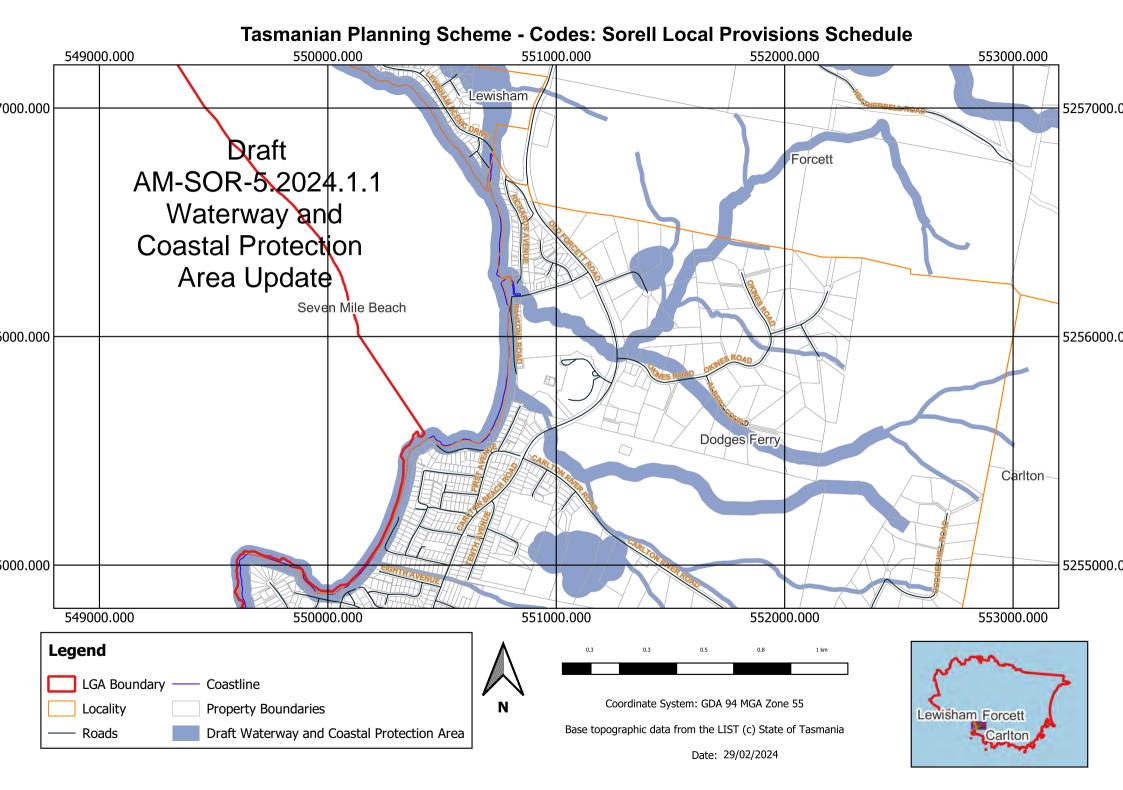



Attachment to item number 5.2 -

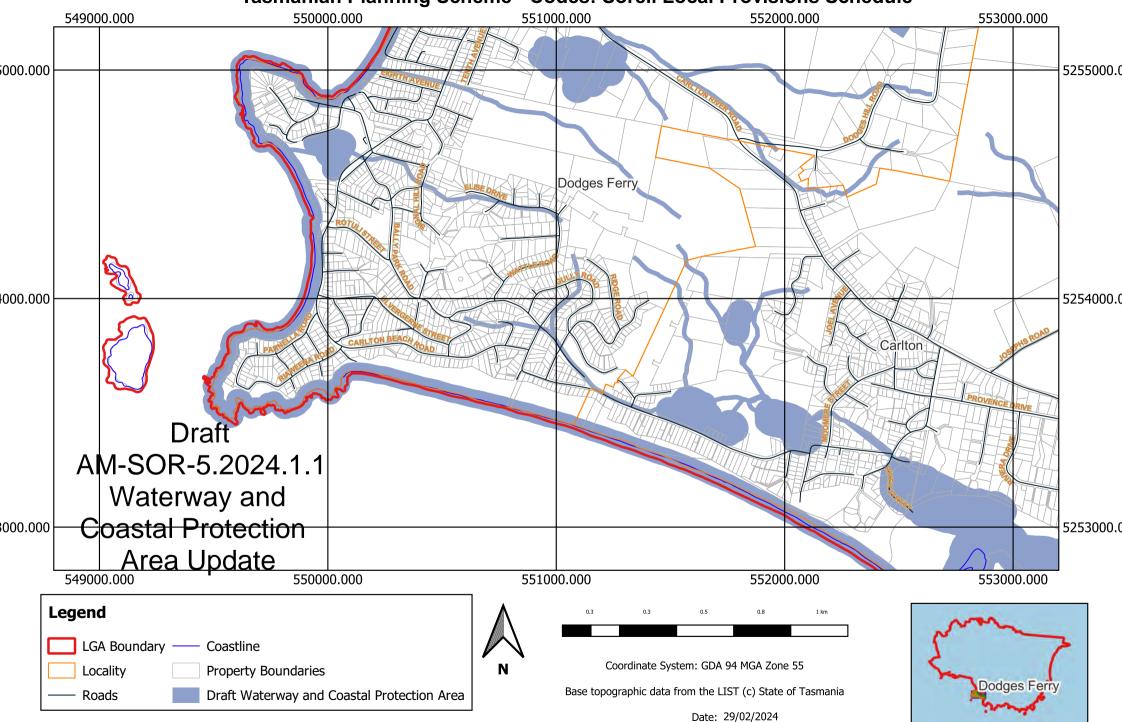
WCPA 11k; and WCPA 55k



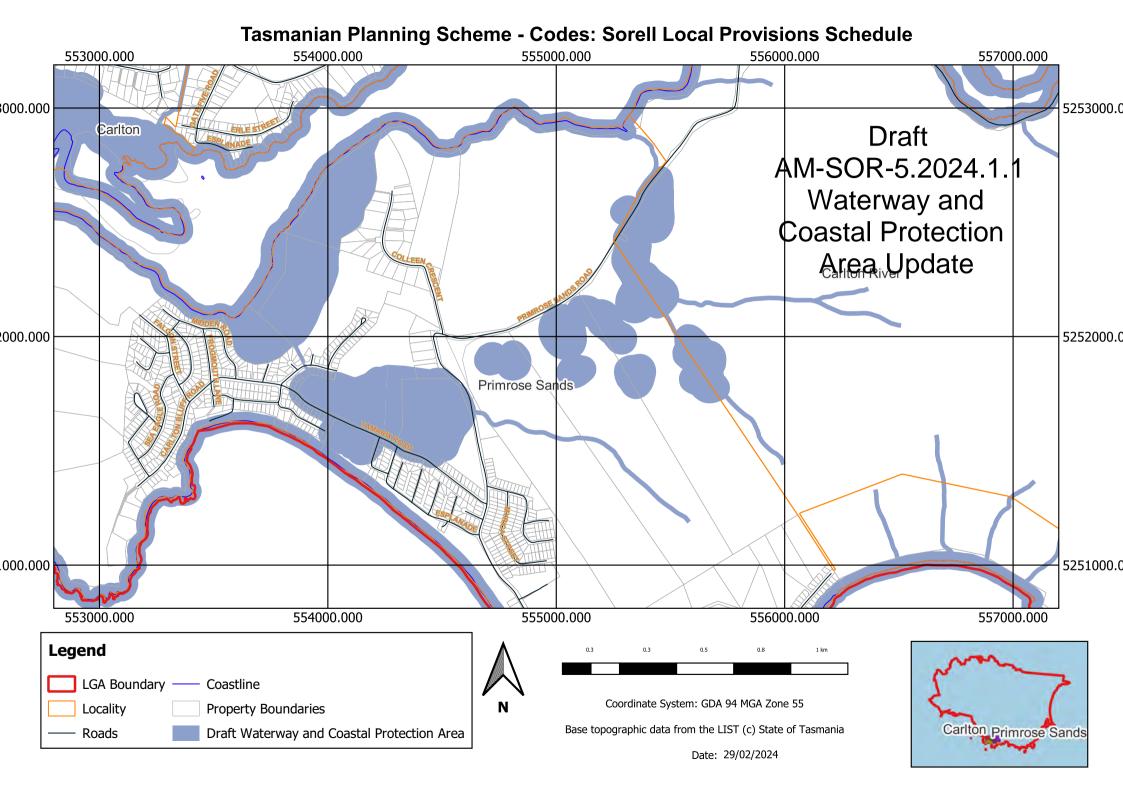


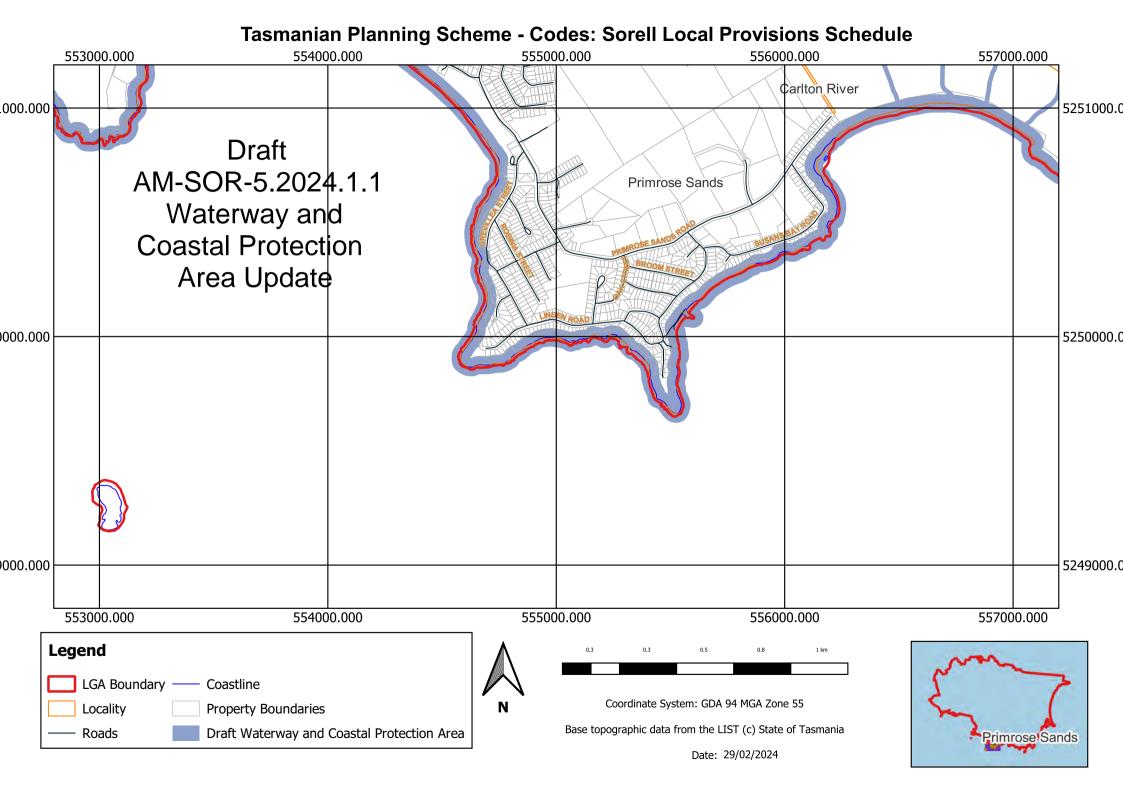

Tasmanian Planning Scheme - Codes: Sorell Local Provisions Schedule 549000.000 550000.000 551000.000 552000.000 553000.000 000.000 5259000.0 Forcett ewisham 5258000.0 000.000 Draft AM-SOR-5.2024.1.1 Waterway and Coastal Protection 5257000.0 Area Update 550000.000 551000.000 552000.000 553000.000 Legend 1 km LGA Boundary — Coastline Coordinate System: GDA 94 MGA Zone 55 Locality **Property Boundaries** Ν Forcett Lewisham Base topographic data from the LIST (c) State of Tasmania Draft Waterway and Coastal Protection Area Roads

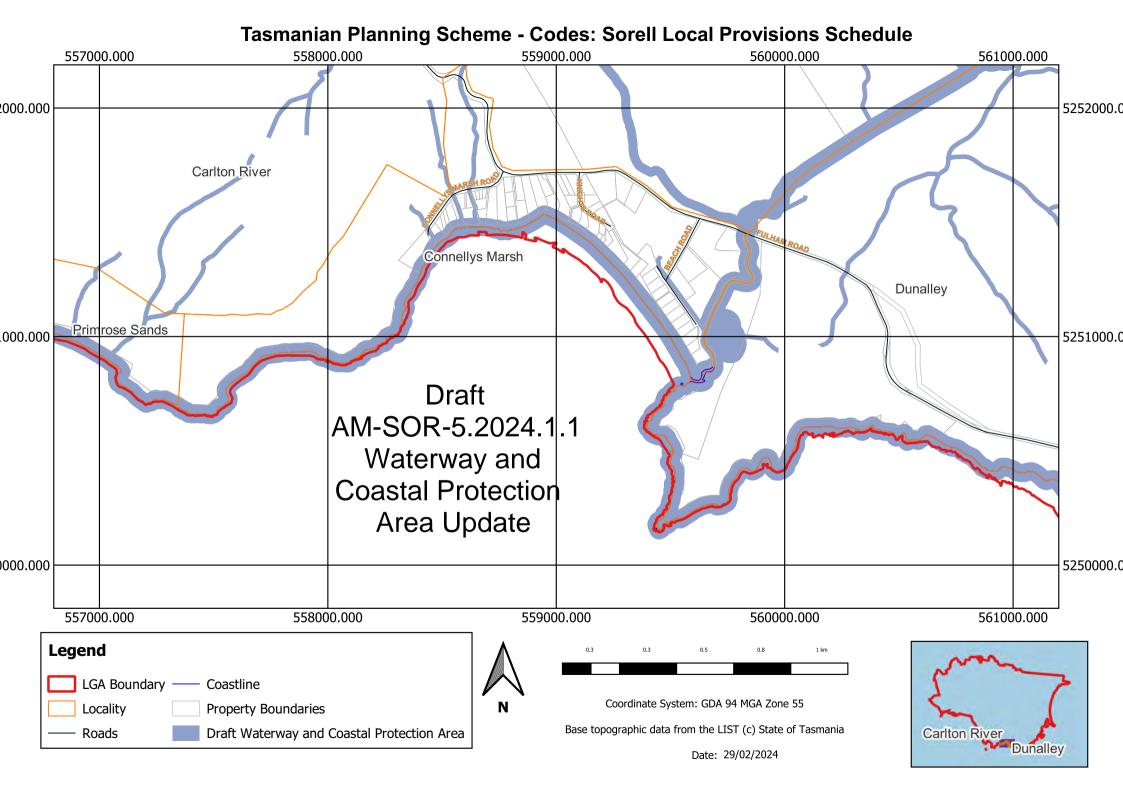
Tasmanian Planning Scheme - Codes: Sorell Local Provisions Schedule

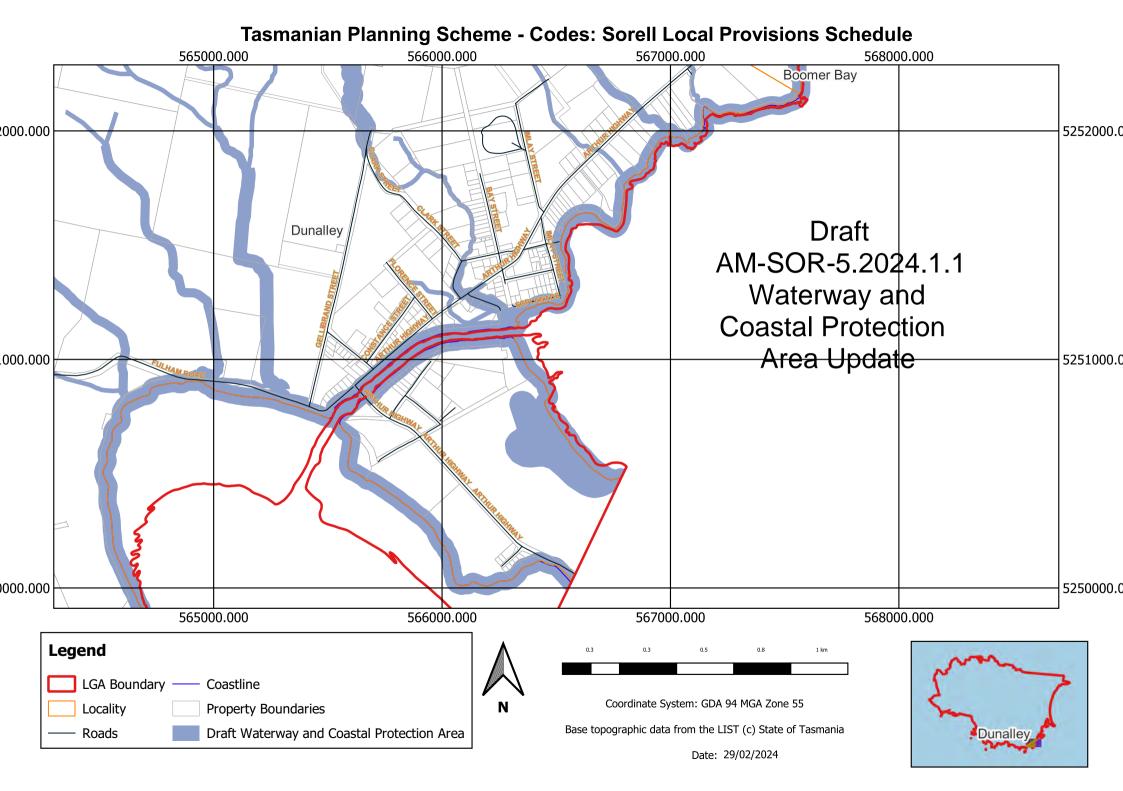


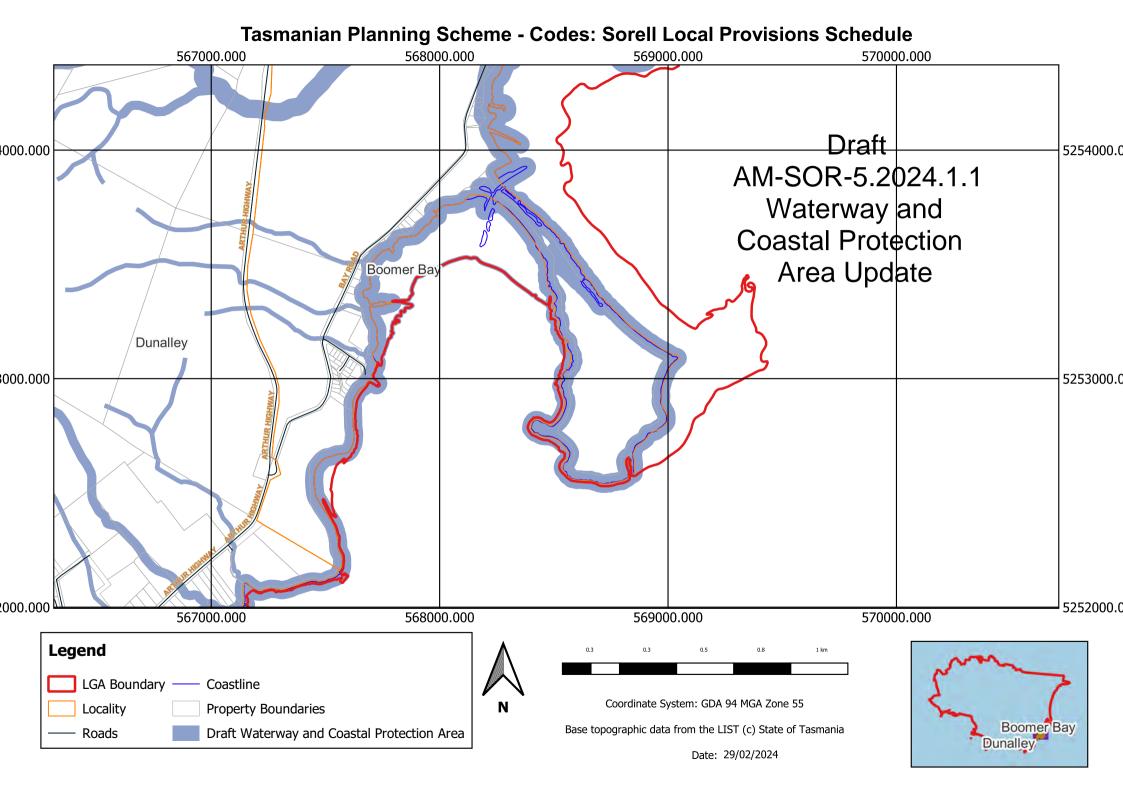
Tasmanian Planning Scheme - Codes: Sorell Local Provisions Schedule

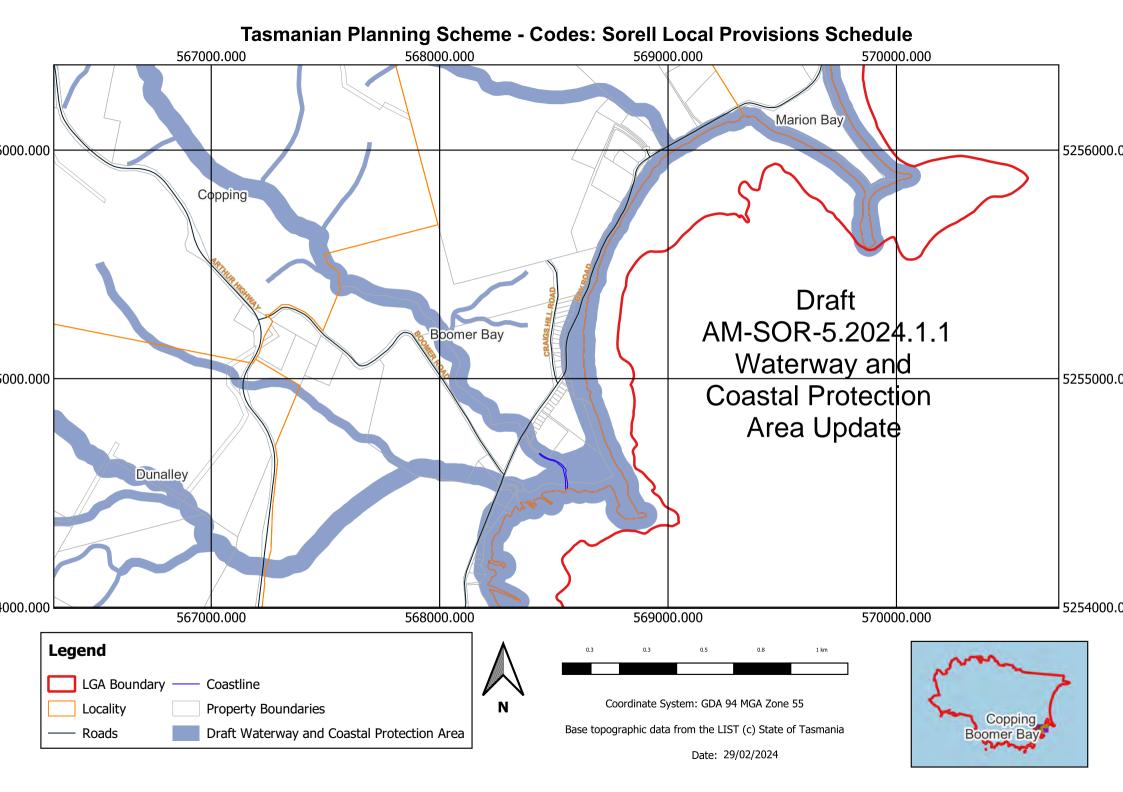


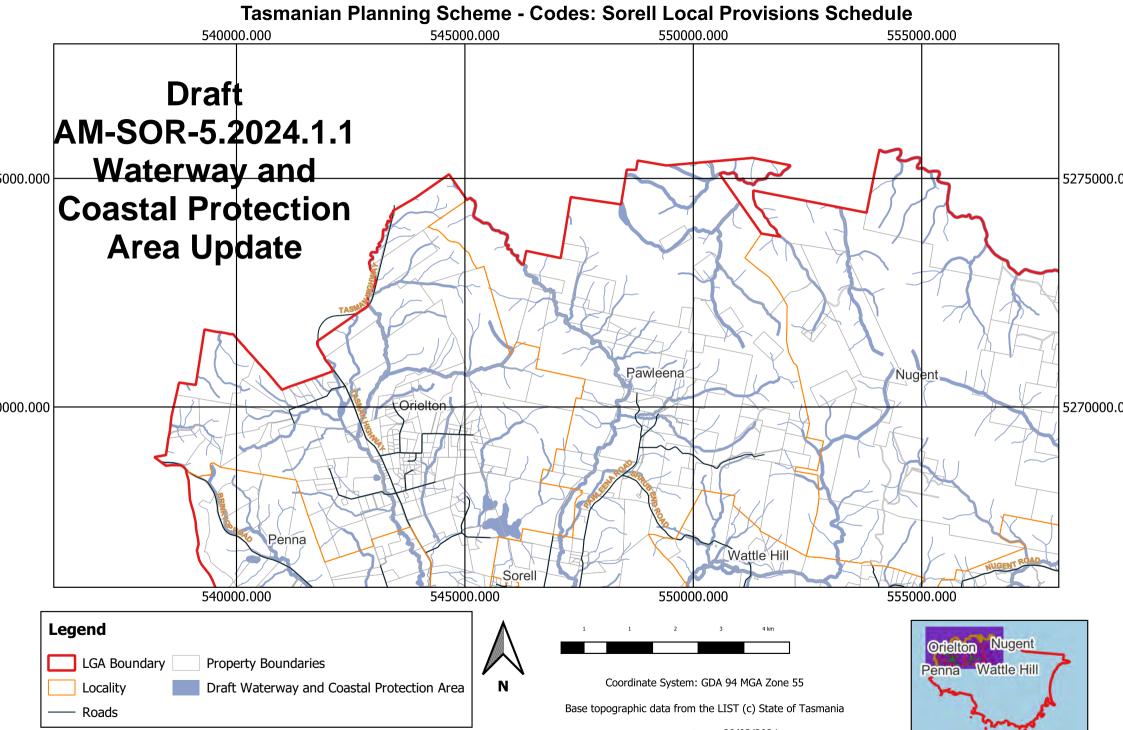


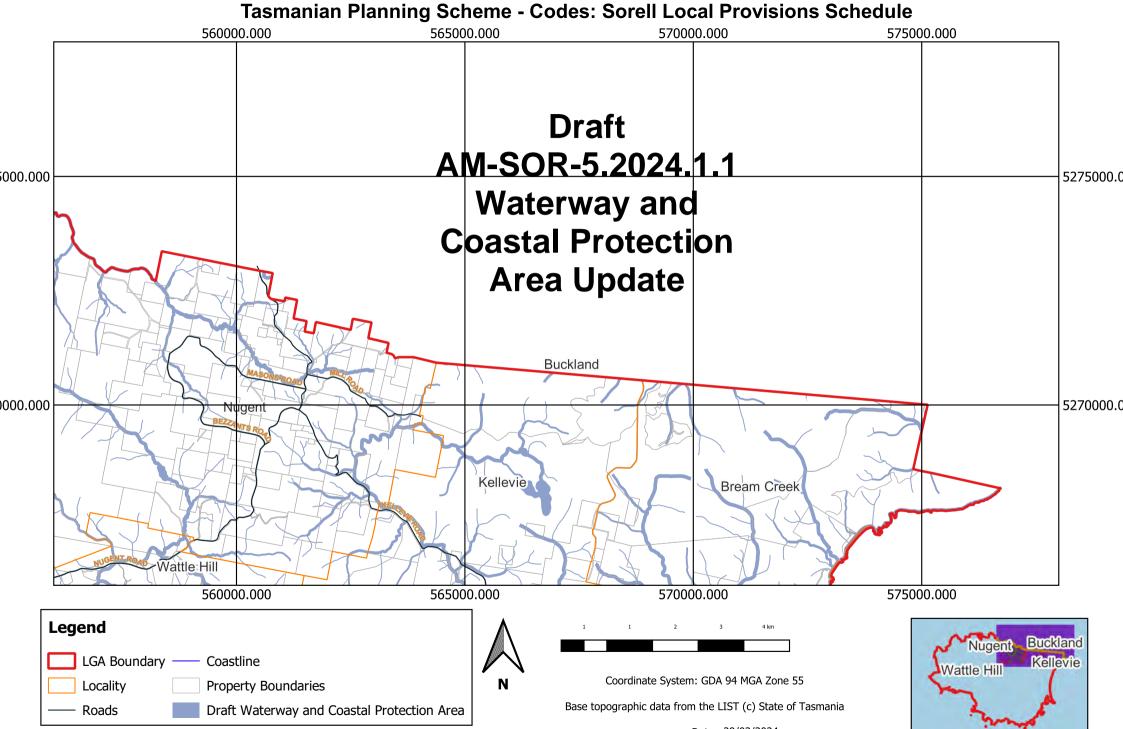

Tasmanian Planning Scheme - Codes: Sorell Local Provisions Schedule

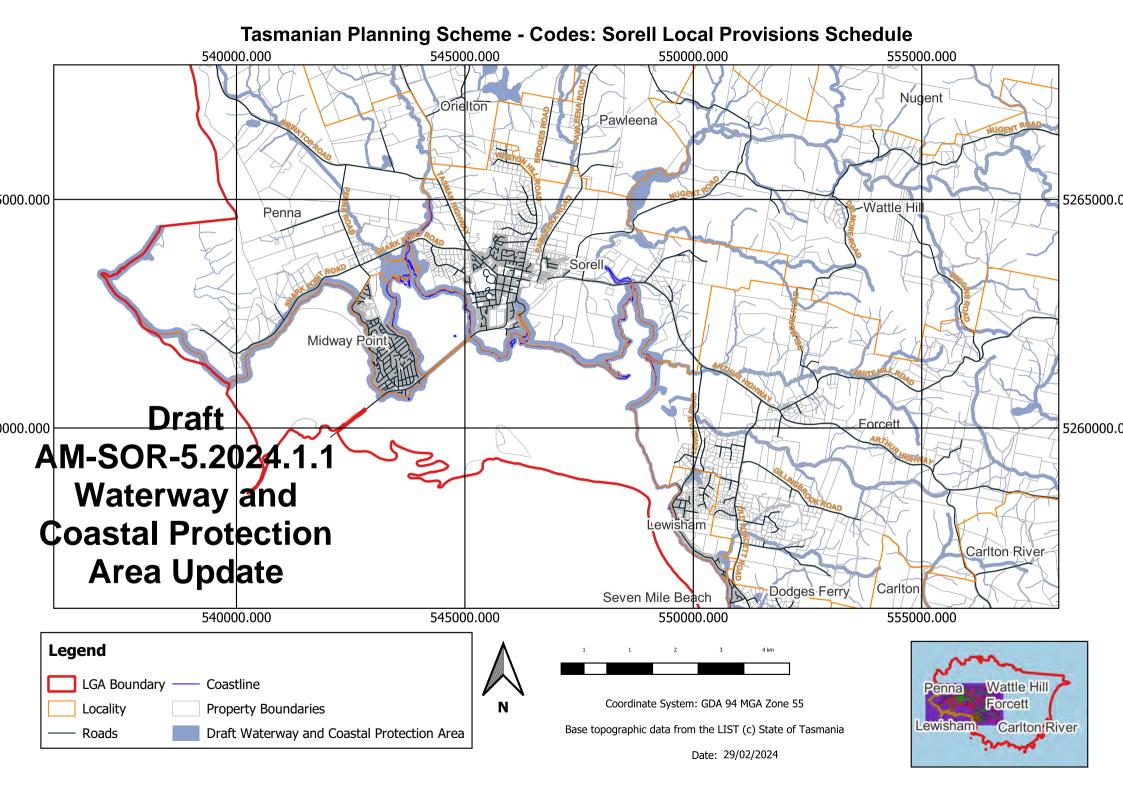


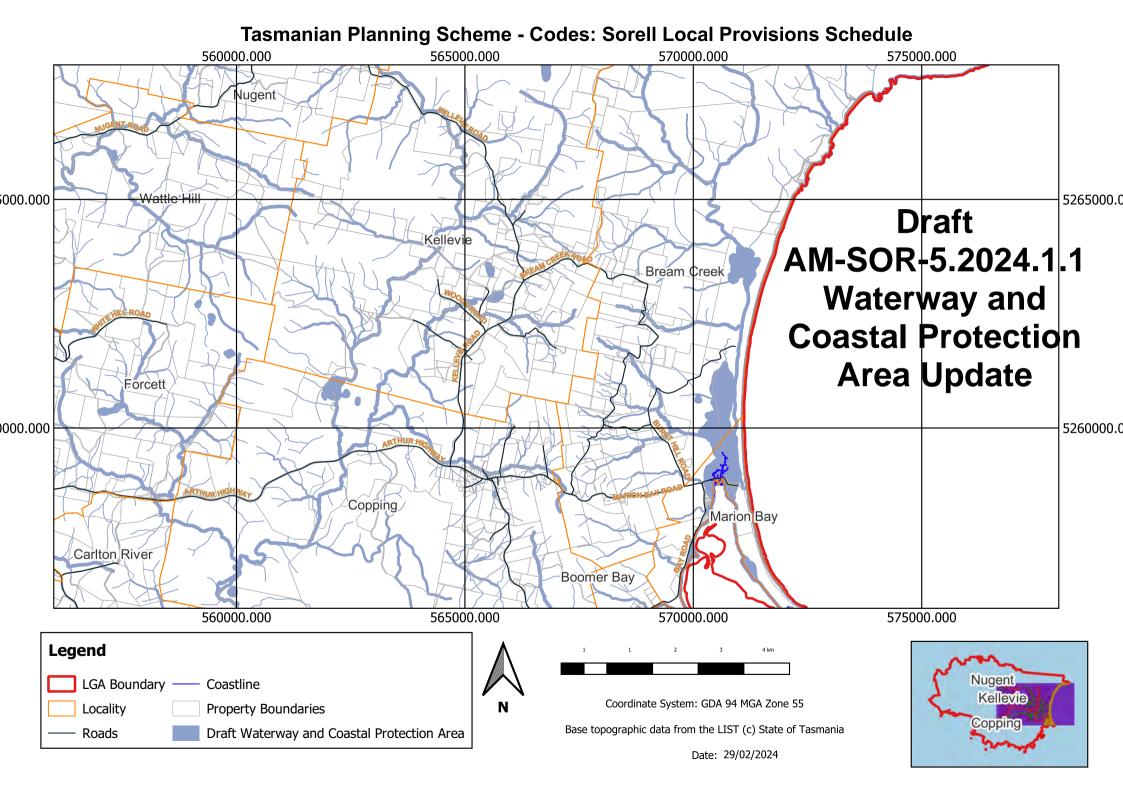

Tasmanian Planning Scheme - Codes: Sorell Local Provisions Schedule 554000.000 553000.000 555000.000 556000.000 557000.000 Dodges Ferry 5255000.0 000.000 Carlton Carlton River 000.000 5254000.0 Draft AM-SOR-5.2024.1.1 E SANDS ROAL Waterway and **Coastal Protection** Area Update 5253000.0 000.000 Primrose Sands 553000.000 554000.000 555000.000 556000.000 557000.000 Legend 03 05 0.8 1 km LGA Boundary — Coastline Coordinate System: GDA 94 MGA Zone 55 Ν Locality **Property Boundaries** Carlton Base topographic data from the LIST (c) State of Tasmania Draft Waterway and Coastal Protection Area Roads Carlton River

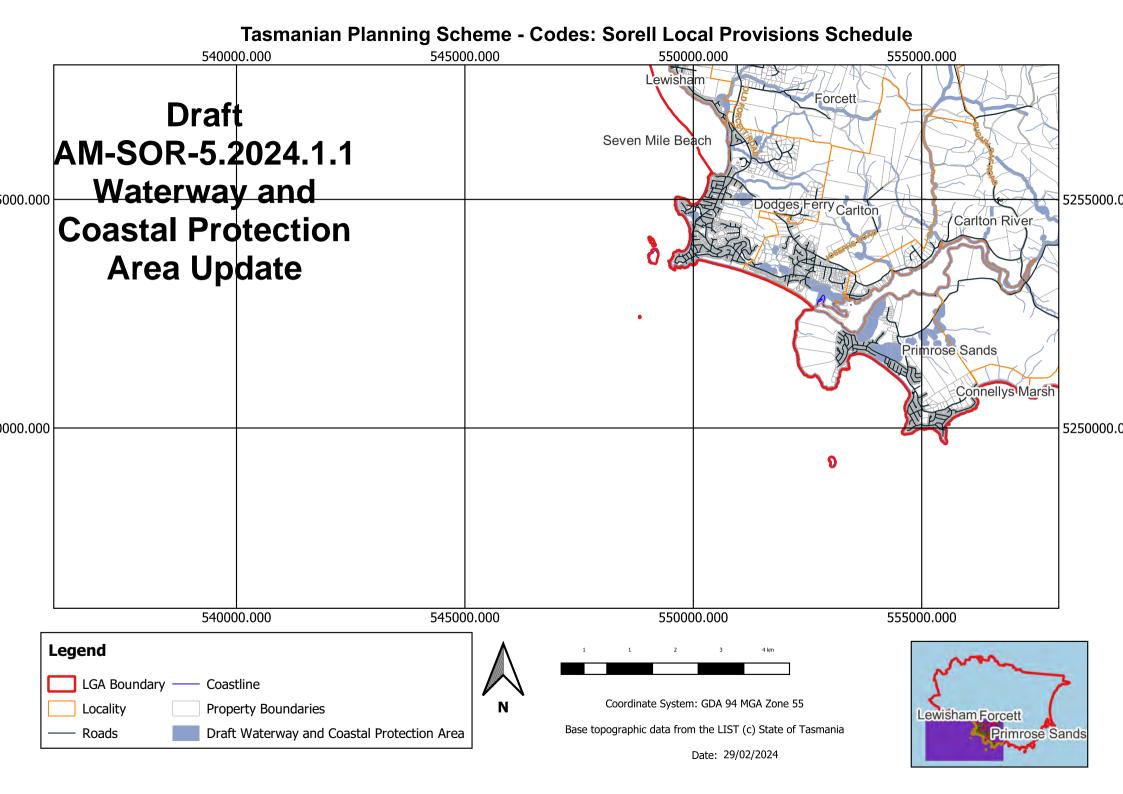











WCPA 55k

